圖1:理想化的降壓與升壓功率級(jí):這些圖看起來真是太棒了!
當(dāng)我們對(duì)于用實(shí)際組件來實(shí)現(xiàn)轉(zhuǎn)換器有更加深入的了解時(shí),這個(gè)波形變得復(fù)雜了很多。不斷困擾開關(guān)轉(zhuǎn)換器的一個(gè)特別明顯的非理想狀態(tài)就是同步降壓或升壓轉(zhuǎn)換器內(nèi)所使用的MOSFET體二極管的反向恢復(fù)。氮化鎵—GaN器件不會(huì)表現(xiàn)出反向恢復(fù)特性,并因此避免了損耗和其它相關(guān)問題。借助于我的LMG5200和一個(gè)差不多的基于硅FET的TPS40170EVM-597,我將開始在24V至5V/4A電源轉(zhuǎn)換器中測(cè)量反向恢復(fù)。
反向恢復(fù)—到底是個(gè)啥東西?
一個(gè)二極管中的反向恢復(fù)就是當(dāng)反向電壓被施加到端子上時(shí)流經(jīng)二極管的反向電流(錯(cuò)誤方向?。ㄕ?qǐng)見圖2)。二極管中有儲(chǔ)存的電荷,這些電荷必須在二極管能夠阻斷反向電壓前重新組合。這個(gè)重新組合是溫度、正向電流、Ifwd、電流的di/dt,以及其它因數(shù)的函數(shù)。
圖2:反向恢復(fù)電流波形
恢復(fù)的電荷,Qrr,被分為兩個(gè)分量:恢復(fù)之前的Qa和恢復(fù)之后的Qb—二極管在此時(shí)開始支持反向電壓—請(qǐng)見圖3。你也許見過Qb與Qa一樣的軟恢復(fù),這樣的話,di/dt比較慢,或者說,你見過Qb很小,而di/dt很高的“活躍”二極管。當(dāng)di/dt很高時(shí)(由二極管急變引起),橋式功率環(huán)路中寄生電感的響應(yīng)方式是把它們儲(chǔ)存的電能傾倒到寄生節(jié)點(diǎn)電容中;電壓振鈴會(huì)由于二階響應(yīng)而出現(xiàn)。這也是將輸入功率級(jí)旁路電容器放置在輸入級(jí)附近的原因。由于環(huán)路中用于快速恢復(fù)的電感較少,由寄生電容導(dǎo)致電壓振鈴的電能較少。
圖3:已恢復(fù)的電荷
我用常規(guī)的方法來計(jì)算反向恢復(fù)損耗:我使用的是數(shù)據(jù)表中的Qrr額定值,并將其乘以頻率和輸入電壓(如果是降壓轉(zhuǎn)換器)或輸出電壓(如果是升壓轉(zhuǎn)換器)。二極管或MOSFET數(shù)據(jù)表通常指定一個(gè)反向恢復(fù)時(shí)間和一個(gè)反向恢復(fù)電荷。例如,CSD18563Q5A指定了一個(gè)49ns的反向恢復(fù)時(shí)間,trr,以及一個(gè)63nC的Qrr。方程式1計(jì)算在一個(gè)300kHz,24V->5V降壓轉(zhuǎn)換器中,由Qrr所導(dǎo)致的損耗一階估算值:
Qrr損耗 ~24V * 300kHz * 63nC = 454mW (1)
請(qǐng)注意!Qrr通常是25°C溫度下,針對(duì)特定Ifwd和di/dt的額定值。實(shí)際Qrr會(huì)在結(jié)溫上升時(shí),比如說125°C時(shí)加倍(或者更多)。di/dt和初始電流都會(huì)有影響(更高或更低)。對(duì)于活躍型二極管,這個(gè)功率的大部分在上部開關(guān)內(nèi)被耗散。對(duì)于軟恢復(fù)二極管,這個(gè)功率在上部開關(guān)和體二極管之間分離開來。如果di/dt和Ifwd條件與我的應(yīng)用相類似,我將25°C溫度下?lián)p耗的2倍作為與恢復(fù)相關(guān)損耗的估算值。
那么,你打算拿這些損耗怎么辦呢?實(shí)際電路中,由反向恢復(fù)導(dǎo)致的真實(shí)峰值電流是多少?你也許嘗試用一個(gè)SPICE工具來仿真恢復(fù),不過我還未在SPICE社區(qū)內(nèi)發(fā)現(xiàn)比較好的針對(duì)二極管恢復(fù)的模型。圖4顯示的是一個(gè)TINA-TI? 仿真的結(jié)果;我用我們的24V/5V降壓轉(zhuǎn)換器的TPS40170產(chǎn)品文件夾對(duì)這個(gè)仿真進(jìn)行了修改,從而顯示出頂部開關(guān)內(nèi)的開關(guān)節(jié)點(diǎn)電壓 (SW) 和電流(負(fù)載電流加上反向恢復(fù)電流,以及用一個(gè)10mΩ分流電阻器感測(cè)到的開關(guān)節(jié)點(diǎn)電容電流)。
圖4:TINA-TI 仿真:TPS540170
注意到大約5A的峰值紋波電路,以及5A峰值反向恢復(fù)電流加上開關(guān)節(jié)點(diǎn)電容充電電流。我運(yùn)行了這個(gè)仿真,并且將溫度從27°C增加至125°C—峰值恢復(fù)電流沒有增加—并且看起來好像SPICE沒有對(duì)這個(gè)恢復(fù)進(jìn)行正確建模。
接下來我們來看一看在一個(gè)真實(shí)電路中測(cè)量反向恢復(fù)的方法。
測(cè)量一個(gè)同步降壓轉(zhuǎn)換器中的反向恢復(fù)不太容易。電流探頭太大,并且會(huì)大幅增加功率級(jí)環(huán)路中的電感。而且電流探頭的帶寬也不夠。
使用一個(gè)分流電阻器怎么樣?這聽起來是可行的,不過你需要確保這個(gè)器件不會(huì)引入過大的環(huán)路電感。我找到了幾個(gè)電阻值在10mΩ,并且具有“低電感”的電阻器。
我很想把這個(gè)器件放在同步FET的源極上,不過會(huì)有兩個(gè)問題:
·分流電阻器上會(huì)出現(xiàn)柵極驅(qū)動(dòng)電流,以及恢復(fù)和負(fù)載電流。
·這個(gè)分流電阻器將增加電感,會(huì)由于高di/dt電流而影響到下橋柵極驅(qū)動(dòng)。
其中一個(gè)解決方案就是將分流電阻器放在上橋MOSFET的漏極內(nèi),這樣的話,分流電阻器就不會(huì)影響到柵極驅(qū)動(dòng)了。Vishay VCS1625/Y08500R01000F9R就具有這樣的功能—它內(nèi)置有開爾文連接,并且具有能夠減少電感的結(jié)構(gòu)。請(qǐng)見圖5。
圖5:分流電阻器(Vishay公司生產(chǎn))
硅MOSFET恢復(fù)測(cè)量
為了用一個(gè)硅MOSFET橋獲得基線Qrr測(cè)量值,我掏出一把切割刀,在TPS40170EVM-597上為分流電阻器辟出了一個(gè)安全島,并將這個(gè)分流電阻器放置其中。我使用的是一條50Ω SMA至BNC電纜,將信號(hào)傳送到這個(gè)示波器(與50Ω的電阻值端接)。我串聯(lián)了一個(gè)50Ω的電阻器,這樣的話,我得到一半的信號(hào)值,不過沒有振鈴。注意在同時(shí)使用不同類型的探頭時(shí)要進(jìn)行失真調(diào)節(jié)!
需要注意的一點(diǎn)是,當(dāng)分流電阻器位于頂端時(shí),這個(gè)示波器被接地至正輸入電壓軌。這意味著電源正輸出被接地(負(fù)電源接至降壓轉(zhuǎn)換器),任何其它測(cè)試設(shè)備,比如說負(fù)載測(cè)試器,一定不能使流經(jīng)示波器連線的電源短路。圖6顯示的是經(jīng)修改的評(píng)估模塊 (EVM) 電路原理圖。
圖6:用于反向恢復(fù)測(cè)量的經(jīng)修改的硅橋
圖7顯示了插入分流電阻器后的TPS40170 EVM。
圖7:EVM探測(cè)技術(shù)
圖8顯示的是開關(guān)節(jié)點(diǎn),以及300kHz, 24VIN, 5VOUT 和4AOUT 時(shí)的分流波形。
圖8:硅橋開關(guān)波形
在圖8中,黃色是軟件節(jié)點(diǎn),而紫色表示的是頂部FET漏極電流。電流平均值的“三角”波形與4A負(fù)載完美匹配 -> 20mV = 4A。
在圖9中,針對(duì)TPS40170/硅MOSFET的高亮反向恢復(fù)電荷用紅色顯示(使用的是CSD185363A)。峰值恢復(fù)電流為18A左右 (90mV),據(jù)我估算,對(duì)于24V*300KHz*100nC = <720mW的損耗,Qrr大約小于100nC。需要注意的是,這個(gè)電流在“紅色區(qū)域”內(nèi)的部分在開關(guān)節(jié)點(diǎn)上升時(shí)流入負(fù)載,所以估算值也許會(huì)比Qrr高一點(diǎn)。
圖9:硅橋反向恢復(fù)
想象一下這種情況!每3.3μs從輸入電源汲取一個(gè)18A、12ns寬的電流脈沖。高di/dt將導(dǎo)致所有功率級(jí)中的環(huán)路電感產(chǎn)生出電壓,并且有可能造成運(yùn)行問題。幸運(yùn)的是,TPS40170EVM-597具有一個(gè)可以緩解這些問題的極佳布局布線—實(shí)際上,這些問題并不會(huì)一直出現(xiàn)。
進(jìn)入GaN,恢復(fù)在哪?
我使用了同樣的技術(shù)來測(cè)量LMG5200 GaN(氮化鎵)EVM。我首先當(dāng)LMG5200EVM在負(fù)載為4A,將24V驅(qū)動(dòng)為5V時(shí),抓取了一個(gè)LMG5200EVM開關(guān)節(jié)點(diǎn)電壓的參考示波器波形圖。我使用的是一臺(tái)安捷倫33220A,在300kHz時(shí),將一個(gè)固定的21%左右的占空比驅(qū)動(dòng)至LMG5200 PWM輸入。請(qǐng)見圖10,通道1顯示的是開關(guān)節(jié)點(diǎn)波形。
圖10:LMG5200 GaN開關(guān)波形
我將高/低驅(qū)動(dòng)信號(hào)包括在內(nèi),作為參考(通道3&4)。這個(gè)“體二極管”傳導(dǎo)比MOSFET的體二極管有更高的壓降—我在這段時(shí)間看到的壓降是2.5V左右,而不是大約0.6V。我抓取了這幅示波器波形圖的原因在于,我將要在輸入環(huán)路中增加一個(gè)會(huì)導(dǎo)致更多振鈴的電阻器/電感。
圖11顯示的是在我將分流電阻器添加到上橋GaN器件的漏極后的變化。
圖11:GaN開關(guān)波形探測(cè)技術(shù)
需要注意的是,我必須用一個(gè)電平位移電路(簡單的PNP和電阻器)來將300kHz 21%占空函數(shù)發(fā)生器信號(hào)從“接地”(現(xiàn)在為24V電源的正值側(cè))電平位移至-24V上的PWM輸入。如果不這么做的話,當(dāng)把示波器感測(cè)放置在正電壓軌上時(shí),我將會(huì)遇到一個(gè)接地競(jìng)爭(zhēng)(或者被稱為保險(xiǎn)絲熔斷)。圖12顯示的是開關(guān)節(jié)點(diǎn)(黃色)和最高GaN電流(紫色)。
圖12:分流電阻器被插入時(shí)的LMG5200 GaN開關(guān)波形
通過放大圖13,可以看出恢復(fù)電流已經(jīng)消失(紅色區(qū)域沒有了)。由于感測(cè)電阻器增加的電感,還有一點(diǎn)點(diǎn)額外的振鈴,不過沒有恢復(fù)損耗或相關(guān)問題。你會(huì)發(fā)現(xiàn)開關(guān)和開關(guān)節(jié)點(diǎn)電容損耗依舊存在,但是GaN上不會(huì)出現(xiàn)導(dǎo)致基于硅MOSFET的轉(zhuǎn)換器問題的反向恢復(fù),這真讓人松了一口氣!
圖13:GaN Qrr測(cè)量值
【推薦閱讀】
機(jī)器人小車DIY——開啟機(jī)器人世界的第一步
奔馳C級(jí)/寶馬3系/奧迪A4L橫測(cè) 豪門三分天下
不能說的秘密,拆車坊編輯一輩子都不想買的車
20個(gè)汽車發(fā)展史上的第一次 你知道幾個(gè)?
EMC攻城獅與桃花島主的故事