【導讀】一般這種問題,我們都會說是時鐘線引起的問題。我之前做的產(chǎn)品是攝像頭,時鐘線加十幾根數(shù)據(jù)線。有一次處理完時鐘線后還是超標,因為正好數(shù)據(jù)線上都串有電阻,我就將電阻都改成了磁珠,想消除因為數(shù)據(jù)線引起的輻射,改完之后發(fā)現(xiàn)還是超標,看不到有明顯的改善。
最近想起來,以前在做EMI整改的時候,出現(xiàn)過低頻輻射超標,類似下面這種。
一般這種問題,我們都會說是時鐘線引起的問題。我之前做的產(chǎn)品是攝像頭,時鐘線加十幾根數(shù)據(jù)線。有一次處理完時鐘線后還是超標,因為正好數(shù)據(jù)線上都串有電阻,我就將電阻都改成了磁珠,想消除因為數(shù)據(jù)線引起的輻射,改完之后發(fā)現(xiàn)還是超標,看不到有明顯的改善。
從那時,我就知道了,輻射一般都是時鐘線引起的,與數(shù)據(jù)線關系不大。不過那時,我一直都不明白為什么會如此。
因為在我看來,時鐘線和數(shù)據(jù)線的上升沿都差不多,按說頻率分量應該是一樣的呀。雖然時鐘線的高低電平交替變化會多一些,但是數(shù)據(jù)線有十幾根了,難道加起來還比不上時鐘線嗎?
實際上數(shù)據(jù)加起來還真比不上時鐘線。
關于這一點,理論可以這么解釋:周期信號由于每個取樣段的頻譜都是一樣的,所以他的頻譜呈離散形,但在各個頻點上比較大,通常成為窄帶噪聲。而非周期信號,由于其每個取樣段的頻譜不一樣,所以其頻譜很寬,而且強度較弱,通常被稱為寬帶噪聲。然而在一般系統(tǒng)中,時鐘信號為周期信號,而數(shù)據(jù)和地址線通常為非周期信號,因此造成系統(tǒng)輻射超標的通常為時鐘信號。
不過呢,這一段話本身就是一個結論,說服力不強,也就有點不敢相信。下面還是來做個實驗模擬下,我們會發(fā)現(xiàn)新東西。實驗思路很簡單,那就是分別得到時鐘線和數(shù)據(jù)線的頻譜,兩者比較下就知道了。
構建時鐘和數(shù)據(jù)信號
我們使用MATLAB來分析頻譜,首先需要構建時鐘和數(shù)據(jù)信號。
時鐘信號很容易,就是高低電平交替變化。正常情況下,數(shù)據(jù)線都是不規(guī)律的,那就采用隨機生成的方式。
構建時鐘和數(shù)據(jù)信號如下圖。
構建時鐘CLK和10根數(shù)據(jù)線如上圖。說明一下,為了減小運算量(軟件運行時間),時鐘頻率設置為1Hz。
得到頻譜
我們分別畫出時鐘的頻譜,1根數(shù)據(jù)線的頻譜,10根數(shù)據(jù)線頻譜的疊加。
需要注意的是,因為數(shù)據(jù)線的數(shù)據(jù)是非周期的,我們盡量時間取長一點,下圖分析的數(shù)據(jù)長度為Num_T=1000個時鐘周期。
從圖可以看出,周期性時鐘信號的頻譜是離散的,非常典型,這個相信大家已經(jīng)見過多次了,而數(shù)據(jù)線的頻譜是比較寬的。這與文章最前面說的是一致的。
并且,圖中右下角有1根數(shù)據(jù)線和10根數(shù)據(jù)線相加的頻譜。我們也可以看到,10根數(shù)據(jù)線相加之和,幅度最高的頻譜分量幅度值大概是0.4左右,而時鐘的基頻分量最高為0.6,也就是說數(shù)據(jù)線加起來,確實抵不過CLK時鐘信號。
一個問題猜測
前面的頻譜分析有一個前提條件,那就是,取樣的時間長度是Num_T=1000個時鐘周期,即分析的數(shù)據(jù)長度是1000個時鐘周期的數(shù)據(jù)。
我發(fā)現(xiàn),如果把時間長度提升10倍,Num_T=10000。那么10根數(shù)據(jù)線相加的頻譜幅度值就更低了,大概只有0.1左右,比原來要低不少,而時鐘的頻譜不變。
增加取樣時間,數(shù)據(jù)線頻譜幅度降低的原因。是因為我使用了Matalb里面的fft函數(shù),這個函數(shù)是將信號看作周期函數(shù)來處理的,就是說假定取樣時間長度為T,那么就默認這個信號是周期函數(shù),周期長度為T。數(shù)據(jù)線信號本來是非周期的,如果用這個函數(shù),那么其實就是讓數(shù)據(jù)線信號的周期為采用時間長度,這也是為什么時間設得越短,幅度值越高。采用時間越短,其實不就是讓數(shù)據(jù)線向周期信號靠攏嗎。
所以,這個采樣時間長度長一些,應該是更為準確的。
不過問題又來了。我突然想到,我們做輻射測試用的頻譜分析儀,它工作的時候,我們可以在頻譜上面看到各個頻率對應的幅值。所以它肯定不是從開始掃描,到結束掃描,只記錄一次數(shù)據(jù)然后最后分析一次。應該也是連續(xù)取一段時間數(shù)據(jù),因為我們可以實時看到當前的頻譜,并且它是變化的,所以會是取一段時間數(shù)據(jù),分析出頻譜,然后顯示出來,再取下一段時間的數(shù)據(jù)進行分析。
當然,以上只是我的猜測。那么它到底一次分析多長的數(shù)據(jù)呢?這個我也沒查到。
對于10Mhz的信號,如果取樣10000個周期的數(shù)據(jù),那么時間長度是1ms。這已經(jīng)是一個很快的頻次了。從上面看,此時10根數(shù)據(jù)線加起來的頻譜幅度最大值才0.1,比時鐘小不少。
實驗源碼
下面分享下matlab源碼,可以修改里面采樣的信號時間長度Num_T,體驗一下。
注:Matlab可以在線執(zhí)行的,沒安裝的同學可以網(wǎng)頁上面執(zhí)行,下面是網(wǎng)頁鏈接,我先前也出了一個簡易的教程,有興趣可以看看。
https://ww2.mathworks.cn/products/matlab-online.html
Fclk=1; %時鐘頻率為1Hz Num_T=1000; %信號長度為1000個時鐘周期 Num_Data=10; %數(shù)據(jù)線的個數(shù)10個 %%%%%%%%%%%%%%%%%%%%%%%% fft采樣設置 Fs=100; %采樣率為Fs L=(Fs/Fclk)*Num_T; %信號長度(采樣總點數(shù)):Num_T個周期的信號,長度越長,fft精度越高,但是執(zhí)行時間越長 T=1/Fs; %采樣周期 t=(1:L)*T; %時間長度 %SIG_DATA=round(rand(Num_Data,2*Num_T)); %產(chǎn)生數(shù)據(jù)信號:0,1隨機分布 SIG_DATA=round(rand(Num_Data,Num_T)); %產(chǎn)生數(shù)據(jù)信號:0,1隨機分布 SIG_CLK=rand(1,2*Num_T); %產(chǎn)生時鐘信號 for i = 1:length(SIG_CLK) if mod(i,2) SIG_CLK(i)=1; else SIG_CLK(i)=0; end end N=length(t); LEN_CLK=zeros(1,N); %定義時鐘信號采樣序列 LEN_DATA=zeros(Num_Data,N); %定義數(shù)據(jù)信號采樣序列 for i=1:N LEN_CLK(i)=SIG_CLK(ceil(i/((Fs/Fclk)/2))); %時鐘信號的采樣序列 for j=1:Num_Data % LEN_DATA(j,i)=SIG_DATA(j,ceil(i/((Fs/Fclk)/2))); %數(shù)據(jù)信號的采樣序列 LEN_DATA(j,i)=SIG_DATA(j,ceil(i/(Fs/Fclk))); %數(shù)據(jù)信號的采樣序列 end end figure; subplot(2,2,[1 2]); plot(t,LEN_CLK+1.5*Num_Data,''''r''''); %畫出30個時鐘周期時鐘信號 set(gca,''''XLim'''',[0 30]);%x軸的數(shù)據(jù)顯示范圍,0-30 set(gca,''''ytick'''',[]); grid on; hold on for j=1:Num_Data plot(t,LEN_DATA(j,:)+(j-1)*1.5,''''k''''); hold on end X_LEN_CLK=abs(fft(LEN_CLK)); subplot(2,2,3); semilogx(Fs*(0:(L/2))/L,X_LEN_CLK(1:L/2+1)*2/L); set(gca,''''XLim'''',[0.1 10000]);%x軸的數(shù)據(jù)顯示范圍 set(gca, ''''XTickLabel'''' ,{''''0.1'''',''''1'''',''''10'''',''''100'''',''''10K'''',''''100K''''}); %x軸頻率數(shù)據(jù) title(''''時鐘頻譜''''); set(gca,''''YLim'''',[-0.1 1]); xlabel(''''f (Hz)''''); ylabel(''''幅度''''); X1_LEN_DATA= abs(fft(LEN_DATA(1,:))); X_LEN_DATA = abs(fft(LEN_DATA(1,:))); for j=2:Num_Data X_LEN_DATA = abs(fft(LEN_DATA(j,:)))+X_LEN_DATA; end subplot(2,2,4); semilogx(Fs*(0:(L/2))/L,X_LEN_DATA(1:L/2+1)*2/L,Fs*(0:(L/2))/L,X1_LEN_DATA(1:L/2+1)*2/L); legend(['''''''',num2str(Num_Data),''''根-數(shù)據(jù)線''''],['''' 1根-數(shù)據(jù)線'''']); set(gca,''''XLim'''',[0.1 10000]);%x軸的數(shù)據(jù)顯示范圍 set(gca, ''''XTickLabel'''' ,{''''0.1'''',''''1'''',''''10'''',''''100'''',''''10K'''',''''100K''''}); %x軸頻率數(shù)據(jù) title(['''''''',num2str(Num_Data),''''數(shù)據(jù)線頻譜'''']); set(gca,''''YLim'''',[-0.1 1]); xlabel(''''f (Hz)''''); ylabel(''''幅度'''');(來源:硬件工程師煉成之路)
免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請電話或者郵箱聯(lián)系小編進行侵刪。