逆自旋霍爾效應(yīng),微波能量可轉(zhuǎn)化為電能?
發(fā)布時間:2016-08-08 責(zé)任編輯:susan
【導(dǎo)讀】隨著來自手機(jī)訊號基地臺、行動裝置、Wi-Fi、藍(lán)牙與5G等產(chǎn)生越來越多的微波充斥全世界,很自然地,科學(xué)家開始探討將這些微波轉(zhuǎn)化成能量的方法。美國猶他大學(xué)(University of Utah)的科學(xué)家們發(fā)現(xiàn)了一種新方法,可在有機(jī)半導(dǎo)體中將微波能量轉(zhuǎn)化為電能。
在實(shí)驗(yàn)室中,研究人員證明了一種新效應(yīng)——稱為逆自旋霍爾效應(yīng)(Hall effect)——利用微波作為磁自旋的來源,將磁自旋流轉(zhuǎn)換成電流。這聽起來像是繞遠(yuǎn)路走了,因?yàn)槭謾C(jī)天線已經(jīng)將微波轉(zhuǎn)化為電能了;然而,研究人員想證實(shí)的重點(diǎn)并不在于預(yù)覽某種應(yīng)用,而是要證明逆自旋霍爾效應(yīng)確實(shí)可被利用和控制,從而成為21世紀(jì)的工具。他們預(yù)測這種效應(yīng)可在一般的電池、太陽能電池與行動裝置等應(yīng)用派上用場。
“我們從該裝置收集的能量是透過微波輻射的方式輸送至該裝置的——在這個意義上,能量轉(zhuǎn)換與天線的原理一樣,即將電磁輻射轉(zhuǎn)換成電流,”猶他大學(xué)教授Christoph Boehme在接受專訪時表示。“不同的是,我們的裝置所具有的實(shí)體機(jī)制完全不同。它并不是透過感應(yīng)完成轉(zhuǎn)換,而是藉由逆自旋霍爾效應(yīng)。事實(shí)上,澄清這樣的事實(shí)——我們看到的不是寄生效應(yīng),如電感應(yīng)(例如簡單的天線效應(yīng))或其它已知的現(xiàn)象——正是這一研究的目的。”
逆向霍爾效應(yīng)最早是由蘇聯(lián)科學(xué)家在1984年證實(shí),最近在半導(dǎo)體領(lǐng)域(2006年)和鐵磁性金屬領(lǐng)域(2013年)也有進(jìn)一步的研究。其概念相對簡單:正如在原子圍繞傳導(dǎo)電流時引發(fā)磁自旋且自旋方向取決于電流方向一樣,若能引發(fā)圍繞導(dǎo)線周圍的原子發(fā)生磁自旋,導(dǎo)線內(nèi)也應(yīng)該會有電流。
然而,概念雖簡單,可展示該概念的設(shè)備卻很復(fù)雜——為此,微波粉墨登場。逆自旋霍爾效應(yīng)的早期實(shí)驗(yàn)使用的是恒定微波——與微波爐內(nèi)的一樣。遺憾的是,微波將裝置的其余部份烤焦了,使得實(shí)驗(yàn)很快夭折,沒什么成績。他們的失敗也為收集環(huán)境中的雜散微波留下陰影,雖然Boehme與其合作伙伴VALY Vardeny教授,都認(rèn)為該想法有可取之處。
“這是個很好的想法,它是否會成為逆自旋霍爾效應(yīng)的應(yīng)用還有待證明,”Boehme在回答我利用雜散微波發(fā)電的建議時表示。
然而,他可能只是出于禮貌,因?yàn)樗趯?shí)驗(yàn)中使用脈沖微波消除過熱的問題。另外,他建議的應(yīng)用聽起來比我想的更可行。
建構(gòu)在一小片玻璃(頂部)上的元件能以逆自旋霍爾效應(yīng)將磁自旋流轉(zhuǎn)換為電流。關(guān)鍵是一個夾層元件(底部),其中外部磁場和微波脈沖在鐵磁體上產(chǎn)生自旋波,然后在嵌入于有機(jī)半導(dǎo)體(聚合物)的銅電極上轉(zhuǎn)換為電流。 (來源:猶他大學(xué),Kipp van Schooten和Dali Sun)
“我們從其它自旋電子學(xué)應(yīng)用(如硬碟讀取磁頭)了解到,自旋電子學(xué)可填補(bǔ)磁場到電流轉(zhuǎn)換技術(shù)中簡單感應(yīng)不再有效的這塊空白——也即感應(yīng)此時變得很不敏感、效率降低(以硬碟來說,就是讀取頭太小),”Boehme表示,“可以想像,能以非常低的成本,在軟性基板(基本上是種箔片)上產(chǎn)生奈米尺寸的薄膜有機(jī)半導(dǎo)體層,并用其做出逆自旋霍爾效應(yīng)元件,所以現(xiàn)在,還無法預(yù)測應(yīng)用范圍。如果效率允許(我們現(xiàn)在還不知道!),那么也可以想像,應(yīng)可用其收集周圍環(huán)境的微波輻射,將收集到的能量用于其它應(yīng)用。”
一言以蔽之,逆自旋霍爾效應(yīng)是可行的(如本文相關(guān)圖表和論文);它是自旋電子學(xué)的新應(yīng)用,在某些方面豐富了業(yè)已不斷成長可用于收集磁自旋的自旋電子效應(yīng)和裝置工具箱。接下來,需要精確測量其效率并嘗試進(jìn)行一些適當(dāng)?shù)膽?yīng)用,以便檢測逆自旋霍爾效應(yīng)對于未來的有機(jī)半導(dǎo)體多么有幫助。
“我們研究的目標(biāo)在于展示如何以一種‘直接的方式’檢測逆自旋霍爾效應(yīng),在缺少或很少簡單微波感應(yīng)效應(yīng)和其它訊號存在的條件下,顯示出強(qiáng)大且可直接觀察到的逆自旋霍爾效應(yīng),”Boehme告訴記者。“透過搭建裝置和進(jìn)行實(shí)驗(yàn),我們已將逆自旋霍爾效應(yīng)的強(qiáng)度較之以前提高了100倍;同時也抑制了寄生效應(yīng)。所以,現(xiàn)在我們的裝置可以很輕易地觀察到這種效應(yīng)。在不久的將來,我們(可能還有其它研究團(tuán)體)將使用此進(jìn)展對該效應(yīng)進(jìn)行真正詳細(xì)的研究。當(dāng)然,這些研究的一部份將著眼于該效應(yīng)到底能多有效地用于潛在技術(shù)應(yīng)用上。”
研究人員在猶他大學(xué)的物理實(shí)驗(yàn)室,透過為幾種有機(jī)半導(dǎo)體施加脈沖微波,展示逆自旋霍爾效應(yīng),這一效應(yīng)可望用于未來的電池、太陽能電池和行動電子裝置(來源:猶他大學(xué),Christoph Boehme)
因此,答案仍然懸而未決,而研究人員們只是提出了基本的配方。它將有賴于研究人員在未來的實(shí)驗(yàn)中評估逆自旋霍爾效應(yīng)在未來應(yīng)用中的有效性。就個人而言,我希望這最終能解決來自通訊基地臺的“微波超載”,使人們不再受到微波的長期‘烘烤’,但如果必須選擇的話,我會在較小規(guī)模的晶片應(yīng)用下睹注,如用于未來超低功耗有機(jī)半導(dǎo)體的新自旋電子元件。
研究人員證明了逆自旋霍爾效應(yīng)可作用于三種有機(jī)半導(dǎo)體材料中:PEDOT、PSS以及3種富含鉑的有機(jī)聚合物,其中兩種是π共軛聚合物,另一種是球形碳-60分子(巴克球),后者被證明最有效。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動控制解決方案 驅(qū)動智能運(yùn)動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點(diǎn)”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務(wù)平臺
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖