你的位置:首頁 > 互連技術 > 正文

【干貨】運放電路的32個經(jīng)典應用電路

發(fā)布時間:2018-11-19 責任編輯:lina

【導讀】平時看到太多很經(jīng)典的運算放大器應用圖集,但都建立在雙電源的基礎上,大多時候,電路的設計者必須用單電源供電,但是又不知道該如何將雙電源的電路轉(zhuǎn)換成單電源電路。在設計單電源電路時需要比雙電源電路更加小心,設計者必須先完全理解此文章中的內(nèi)容,方可更好地去運用。
 
平時看到太多很經(jīng)典的運算放大器應用圖集,但都建立在雙電源的基礎上,大多時候,電路的設計者必須用單電源供電,但是又不知道該如何將雙電源的電路轉(zhuǎn)換成單電源電路。在設計單電源電路時需要比雙電源電路更加小心,設計者必須先完全理解此文章中的內(nèi)容,方可更好地去運用。

1.1 電源供電和單電源供電
 
所有的運算放大器都有兩個電源引腳,一般在資料中,它們的標識是 VCC+和 VCC-,但是有些時候它們的標識是 VCC+和 GND。這是因為有些數(shù)據(jù)手冊的作者企圖將這種標識的差異作為單電源運放和雙電源運放的區(qū)別。但是,這并不是說他們就一定要那樣使用――他們可能可以工作在其他的電壓下。在運放不是按默認電壓供電的時候,需要參考運放的數(shù)據(jù)手冊,特別是絕對最大供電電壓和電壓擺動說明。
 
絕大多數(shù)的模擬電路設計者都知道怎么在雙電源電壓的條件下使用運算放大器,比如圖一左邊的那個電路,一個雙電源是由一個正電源和一個相等電壓的負電源組成。一般是正負 15V,正負 12V 和正負 5V 也是經(jīng)常使用的。輸入電壓和輸出電壓都是參考地給出的,還包括正負電壓的擺動幅度極限 Vom 以及最大輸出擺幅。單電源供電的電路(圖一中右)運放的電源腳連接到正電源和地。正電源引腳接到VCC+,地或者 VCC-引腳連接到 GND。將正電壓分成一半后的電壓作為虛地接到運放的輸入引腳上,這時運放的輸出電壓也是該虛地電壓,運放的輸出電壓以虛地為中心,擺幅在 Vom 之內(nèi)。有一些新的運放有兩個不同的最高輸出電壓和最低輸出電壓。這種運放的數(shù)據(jù)手冊中會特別分別指明 Voh 和 Vol。需要特別注意的是有不少的設計者會很隨意的用虛地來參考輸入電壓和輸出電壓,但在大部分應用中,輸入和輸出是參考電源地的,所以設計者必須在輸入和輸出的地方加入隔直電容,用來隔離虛地和地之間的直流電壓。(參見 1.3 節(jié))
 
 
【干貨】運放電路的32個經(jīng)典應用電路
圖一
 
通常單電源供電的電壓一般是 5V,這時運放的輸出電壓擺幅會更低。另外現(xiàn)在運放的供電電壓也可以是 3V 也或者會更低。出于這個原因在單電源供電的電路中使用的運放基本上都是 Rail-To-Rail 的運放,這樣就消除了丟失的動態(tài)范圍。需要特別指出的是輸入和輸出不一定都能夠承受 Rail-To-Rail 的電壓。雖然器件被指明是 Rail-To-Rail 的,如果運放的輸出或者輸入不支持 Rail-To-Rail,接近輸入或者接近輸出電壓極限的電壓可能會使運放的功能退化,所以需要仔細的參考數(shù)據(jù)手冊是否輸入和輸出是否都是 Rail-To-Rail。這樣才能保證系統(tǒng)的功能不會退化,這是設計者的義務。
 
1.2 虛地
 
單電源工作的運放需要外部提供一個虛地,通常情況下,這個電壓是 VCC/2,圖二的電路可以用來產(chǎn)生 VCC/2 的電壓,但是他會降低系統(tǒng)的低頻特性。
 
 
【干貨】運放電路的32個經(jīng)典應用電路
圖二
 
R1 和 R2 是等值的,通過電源允許的消耗和允許的噪聲來選擇,電容 C1 是一個低通濾波器,用來減少從電源上傳來的噪聲。在有些應用中可以忽略緩沖運放。
 
在下文中,有一些電路的虛地必須要由兩個電阻產(chǎn)生,但是其實這并不是完美的方法。
 
在這些例子中,電阻值都大于 100K,當這種情況發(fā)生時,電路圖中均有注明。
 
1.3 交流耦合
 
虛地是大于電源地的直流電平,這是一個小的、局部的地電平,這樣就產(chǎn)生了一個電勢問題:輸入和輸出電壓一般都是參考電源地的,如果直接將信號源的輸出接到運放的輸入端,這將會產(chǎn)生不可接受的直流偏移。如果發(fā)生這樣的事情,運放將不能正確的響應輸入電壓,因為這將使信號超出運放允許的輸入或者輸出范圍。
 
解決這個問題的方法將信號源和運放之間用交流耦合。使用這種方法,輸入和輸出器件就都可以參考系統(tǒng)地,并且運放電路可以參考虛地。
 
當不止一個運放被使用時,如果碰到以下條件級間的耦合電容就不是一定要使用:
 
第一級運放的參考地是虛地,第二級運放的參考第也是虛地
 
這兩級運放的每一級都沒有增益。任何直流偏置在任何一級中都將被乘以增益,并且可能使得電路超出它的正常工作電壓范圍。
 
如果有任何疑問,裝配一臺有耦合電容的原型,然后每次取走其中的一個,觀察電工作是否正常。除非輸入和輸出都是參考虛地的,否則這里就必須要有耦合電容來隔離信號源和運放輸入以及運放輸出和負載。一個好的解決辦法是斷開輸入和輸出,然后在所有運放的兩個輸入腳和運放的輸出腳上檢查直流電壓。所有的電壓都必須非常接近虛地的電壓,如果不是,前級的輸出就就必須要用電容做隔離。(或者電路有問題)
 
1.4 組合運放電路
 
在一些應用中,組合運放可以用來節(jié)省成本和板上的空間,但是不可避免的引起相互之間的耦合,可以影響到濾波、直流偏置、噪聲和其他電路特性。設計者通常從獨立的功能原型開始設計,比如放大、直流偏置、濾波等等。在對每個單元模塊進行校驗后將他們聯(lián)合起來。除非特別說明,否則本文中的所有濾波器單元的增益都是 1。
 
1.5 選擇電阻和電容的值
 
每一個剛開始做模擬設計的人都想知道如何選擇元件的參數(shù)。電阻是應該用 1 歐的還是應該用 1 兆歐的?一般的來說普通的應用中阻值在 K 歐級到 100K 歐級是比較合適的。高速的應用中阻值在 100 歐級到 1K 歐級,但他們會增大電源的消耗。便攜設計中阻值在 1 兆級到 10 兆歐級,但是他們將增大系統(tǒng)的噪聲。用來選擇調(diào)整電路參數(shù)的電阻電容值的基本方程在每張圖中都已經(jīng)給出。如果做濾波器,電阻的精度要選擇 1% E-96 系列(參看附錄 A)。一但電阻值的數(shù)量級確定了,選擇標準的 E-12 系列電容。
 
用 E-24 系列電容用來做參數(shù)的調(diào)整,但是應該盡量不用。用來做電路參數(shù)調(diào)整的電容不應該用 5%的,應該用 1%。
 
基本電路
 
2.1放大
 
放大電路有兩個基本類型:同相放大器和反相放大器。他們的交流耦合版本如圖三所示。
 
對于交流電路,反向的意思是相角被移動 180 度。這種電路采用了耦合電容――Cin。Cin被用來阻止電路產(chǎn)生直流放大,這樣電路就只會對交流產(chǎn)生放大作用。如果在直流電路中,Cin被省略,那么就必須對直流放大進行計算。
 
在高頻電路中,不要違反運放的帶寬限制,這是非常重要的。實際應用中,一級放大電路的增益通常是 100 倍(40dB),再高的放大倍數(shù)將引起電路的振蕩,除非在布板的時候就非常注意。如果要得到一個放大倍數(shù)比較的大放大器,用兩個等增益的運放或者多個等增益運放比用一個運放的效果要好的多。
 
 
【干貨】運放電路的32個經(jīng)典應用電路
圖三
 
2.2衰減
 
傳統(tǒng)的用運算放大器組成的反相衰減器如圖 4 所示
 
【干貨】運放電路的32個經(jīng)典應用電路
圖四
 
在電路中 R2 要小于 R1。這種方法是不被推薦的,因為很多運放是不適宜工作在放大倍數(shù)小于 1 倍的情況下。正確的方法是用圖 5 的電路。
 
【干貨】運放電路的32個經(jīng)典應用電路
圖五
 
在表一中的一套規(guī)格化的 R3 的阻值可以用作產(chǎn)生不同等級的衰減。對于表中沒有的阻值,可以用以下的公式計算
 
R3=(Vo/Vin)/(2-2(Vo/Vin))
 
如果表中有值,按以下方法處理:
 
為 Rf 和 Rin 在 1K 到 100K 之間選擇一個值,該值作為基礎值。
 
將 Rin 除以二得到 RinA 和RinB。
 
將基礎值分別乘以 1 或者 2 就得到了 Rf、Rin1 和 Rin2,如圖五中所示。
 
在表中給 R3 選擇一個合適的比例因子,然后將他乘以基礎值。
 
比如,如果 Rf 是 20K,RinA 和 RinB 都是 10K,那么用12.1K 的電阻就可以得到-3dB 的衰減
 
【干貨】運放電路的32個經(jīng)典應用電路
表一

圖六中同相的衰減器可以用作電壓衰減和同相緩沖器使用。
 
【干貨】運放電路的32個經(jīng)典應用電路
圖六
 
2.3 加法器
 
圖七是一個反相加法器,他是一個基本的音頻混合器。但是該電路的很少用于真正的音頻混合器。因為這會逼近運放的工作極限,實際上我們推薦用提高電源電壓的辦法來提高動態(tài)范圍。
 
同相加法器是可以實現(xiàn)的,但是是不被推薦的。因為信號源的阻抗將會影響電路的增益。
 
【干貨】運放電路的32個經(jīng)典應用電路
圖七
 
2.4 減法器
 
就像加法器一樣,圖八是一個減法器。一個通常的應用就是用于去除立體聲磁帶中的原唱而留下伴音(在錄制時兩通道中的原唱電平是一樣的,但是伴音是略有不同的)
 
 
【干貨】運放電路的32個經(jīng)典應用電路
 
圖八
 
2.5 模擬電感
 
圖九的電路是一個對電容進行反向操作的電路,它用來模擬電感。電感會抵制電流的變化,所以當一個直流電平加到電感上時電流的上升是一個緩慢的過程,并且電感中電阻上的壓降就顯得尤為重要。
 
【干貨】運放電路的32個經(jīng)典應用電路
圖九
 
電感會更加容易的讓低頻通過它,它的特性正好和電容相反,一個理想的電感是沒有電阻的,它可以讓直流電沒有任何限制的通過,對頻率是無窮大的信號有無窮大的阻抗。
 
如果直流電壓突然通過電阻 R1 加到運放的反相輸入端上的時候,運放的輸出將不會有任何的變化,因為這個電壓同過電容C1 也同樣加到了正相輸出端上,運放的輸出端表現(xiàn)出了很高的阻抗,就像一個真正的電感一樣。
 
隨著電容 C1 不斷的通過電阻 R2 進行充電,R2上電壓不斷下降,運放通過電阻 R1 汲取電流。隨著電容不斷的充電,最后運放的兩個輸入腳和輸出腳上的電壓最終趨向于虛地(Vcc/2)。
 
當電容 C1 完全被充滿時,電阻 R1 限制了流過的電流,這就表現(xiàn)出一個串連在電感中電阻。這個串連的電阻就限制了電感的 Q 值。真正電感的直流電阻一般會比模擬的電感小的多。
 
這有一些模擬電感的限制:
 
電感的一段連接在虛地上
 
模擬電感的 Q 值無法做的很高,取決于串連的電阻 R1
 
模擬電感并不像真正的電感一樣可以儲存能量,真正的電感由于磁場的作用可以引起很高的反相尖峰電壓,但是模擬電感的電壓受限于運放輸出電壓的擺幅,所以響應的脈沖受限于電壓的擺幅。
 
2.6 儀用放大器
 
儀用放大器用于需要對小電平信號直流信號進行放大的場合,他是由減法器拓撲而來的。
 
儀用放大器利用了同相輸入端高阻抗的優(yōu)勢。
 
基本的儀用放大器如圖十所示
 
【干貨】運放電路的32個經(jīng)典應用電路
圖十
 
這個電路是基本的儀用放大電路,其他的儀用放大器也如圖中所示,這里的輸入端也使用了單電源供電。這個電路實際上是一個單電源的應變儀。這個電路的缺點是需要完全相等的電阻,否則這個電路的共模抑制比將會很低(參看文檔《Op Amps for Everyone》)。
 
圖十中的電路可以簡單的去掉三個電阻,就像圖十一中的電路。
 
【干貨】運放電路的32個經(jīng)典應用電路
圖十一
 
這個電路的增益非常好計算。但是這個電路也有一個缺點:那就是電路中的兩個電阻必須一起更換,而且他們必須是等值的。另外還有一個缺點,第一級的運放沒有產(chǎn)生任何有用的增益。
 
另外用兩個運放也可以組成儀用放大器,就像圖十二所示。
 
【干貨】運放電路的32個經(jīng)典應用電路
圖十二
 
但是這個儀用放大器是不被推薦的,因為第一個運放的放大倍數(shù)小于一,所以他可能是不穩(wěn)定的,而且 Vin-上的信號要花費比 Vin+上的信號更多的時間才能到達輸出端。
 
濾波電路這節(jié)非常深入的介紹了用運放組成的有源濾波器。在很多情況中,為了阻擋由于虛地引起的直流電平,在運放的輸入端串入了電容。這個電容實際上是一個高通濾波器,在某種意義上說,像這樣的單電源運放電路都有這樣的電容。設計者必須確定這個電容的容量必須要比電路中的其他電容器的容量大 100 倍以上。這樣才可以保證電路的幅頻特性不會受到這個輸入電容的影響。如果這個濾波器同時還有放大作用,這個電容的容量最好是電路中其他電容容量的 1000 倍以上。如果輸入的信號早就包含了 VCC/2 的直流偏置,這個電容就可以省略。
 
這些電路的輸出都包含了 VCC/2 的直流偏置,如果電路是最后一級,那么就必須串入輸出電容。
 
這里有一個有關濾波器設計的協(xié)定,這里的濾波器均采用單電源供電的運放組成。濾波器的實現(xiàn)很簡單,但是以下幾點設計者必須注意:濾波器的拐點(中心)頻率濾波器電路的增益帶通濾波器和帶阻濾波器的的 Q 值,低通和高通濾波器的類型(Butterworth、Chebyshev、Bessell)。
 
不幸的是要得到一個完全理想的濾波器是無法用一個運放組成的。即使可能,由于各個元件之間的負雜互感而導致設計者要用非常復雜的計算才能完成濾波器的設計。通常對波形的控制要求越復雜就意味者需要更多的運放,這將根據(jù)設計者可以接受的最大畸變來決定。
 
或者可以通過幾次實驗而最終確定下來。如果設計者希望用最少的元件來實現(xiàn)濾波器,那么就別無選擇,只能使用傳統(tǒng)的濾波器,通過計算就可以得到了。
 
 
推薦閱讀:
詳解退耦電路的工作原理 
丹佛斯傳動50周年“尋物啟事”丨尋找最長壽的變頻器 
解析新型指紋識別傳感器應用 
MRSI宣布在中國深圳建立HVM3芯片貼裝演示能力 
大咖談技術:靜電電容式觸摸檢測技術  
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉