【導(dǎo)讀】無論是從保護(hù)電力系統(tǒng)的安全還是從保護(hù)用電設(shè)備和人身的安全來看,嚴(yán)格控制并限定電流諧波含量,以減少諧波污染造成的危害已成為人們的共識(shí)。
總諧波失真THD與功率因數(shù) PF 的關(guān)系
市面上很多的 LED 驅(qū)動(dòng)電源,其輸入電路采用簡(jiǎn)單的橋式整流器和電解電容器的整流 濾波電路,見圖 1.
圖1
該電路只有在輸入交流電壓的峰值附近,整流二極管才出現(xiàn)導(dǎo)通,因此其導(dǎo)通角θ比 較小,大約為 60°左右,致使輸入電流波形為尖狀脈沖,脈寬約為 3ms,是半個(gè)周期(10ms) 的 1/3.輸入電壓及電流波形如圖 2 所示。由此可見,造成 LED 電源輸入電流畸變的根本原 因是使用了直流濾波電解電容器的容性負(fù)載所致。
對(duì)于 LED 驅(qū)動(dòng)電源輸入電流產(chǎn)生畸變的非正弦波,須用傅里葉(Fourier)級(jí)數(shù)描述。 根據(jù)傅里葉變換原理,瞬時(shí)輸入電流可表為:
每一個(gè)電流諧波,通常會(huì)有一個(gè)正弦或余弦周期,n 次諧波電流有效值 In 可用下式計(jì)算:
輸入總電流有效值
上式根號(hào)中,I1 為基波電流有效值,其余的 I2,3,分別代表 2,3,… n 次諧波電流有效值。 用基波電流百分比表示的電流總諧波含量叫總諧波失真(THD) ,總諧波含量反映了波形的 畸變特性,因此也叫總諧波畸變率。定義為
根據(jù)功率因數(shù) PF 的定義,功率因數(shù) PF 是指交流輸入的有功功率 P 與輸入視在功率 S 之比值,即
其中, 為輸入電源電壓; U cosΦ1 叫相移因數(shù), 它反映了基波電流 i1 與電壓 u 的相位關(guān)系, Φ1 是基波相移角;輸入基波電流有效值 I1 與輸入總電流有效值 Irms 的百分比即 K=I1 / Irms 叫輸入電流失真系數(shù)。上式表明,在 LED 驅(qū)動(dòng)電源等非線性的開關(guān)電源電路中,功率 因數(shù) PF 不僅與基波電流 i1 電壓 u 之間的相位有關(guān),而且還與輸入電流失真系數(shù) K 有關(guān)。 將式(6)代入式(7) ,則功率因數(shù) PF 與總諧波失真 THD 有如下關(guān)系:
上式說明,在相移因數(shù) cosΦ1 不變時(shí),降低總諧波失真 THD,可以提高功率因數(shù) PF;反之 也能說明, PF 越高則 THD 越小。 例如,通過計(jì)算,當(dāng)相移角 Φ1=0 時(shí),THD=30% @ PF=0.9578;THD=10% @ PF=0.9950.
諧波測(cè)量與分析
為了很好地分析如圖 1 所示的 LED 驅(qū)動(dòng)電源的諧 波含量,介紹一種使用示波器測(cè)量輸 入電流的方法。先在電源輸入回路串接一個(gè) 10-20W 或以上的大功率電阻如 R=10 OHM,通電 后測(cè)量大功率電阻上兩端的電壓波形,由于純功率電阻上兩端的電壓與電流始終是同相位, 因此電阻上的脈沖電壓波形亦即代表了輸入電流的脈沖波形,但數(shù)值大小不同。由波形顯 示可知,其脈沖電流 i(t)與圖 2 的電流波形是一致的,見圖3.
圖3
此電流脈沖波近似于余弦脈沖波,因此可用余弦脈沖函數(shù)表為:
為了計(jì)算方便,現(xiàn)取正弦交流輸入電壓的一個(gè)周期 T:-5ms≤t≤15ms,即 T=20ms.由此, 一個(gè)周期為 20ms 的輸入脈沖電流的表達(dá)式如下:
上式中,余弦脈沖電流幅值 Im 可由示波器顯示的電壓幅值與電阻值之比而算出,即 Im=Um/R,已知測(cè)得 Um=1.5V,則 Im=1.5/10=0.15A.圖中脈沖寬度τ=3ms. 對(duì)于圖 2 所示的輸入電流波形,是關(guān)于前后半波上下對(duì)稱的奇次對(duì)稱波,因而只含有 a1、a3、a5……等奇次諧波分量,而直流分量 a0 和偶次諧波分量 a2、a4、a6……均為零。 將式(10)的輸入電流波形進(jìn)行傅里葉分解得:
根據(jù)積分公式:
并且有 a=π/τ,b=nω,ω=2π/T,因此有:
當(dāng) n=1 時(shí)將 T=20ms、τ=3ms、Im=0.15A 代入上式,得
計(jì)算得基波電流幅值 a1=I1m=0.06×(0.608+0.327)=0.056(A) 。
同理,分別計(jì)算 a3,a5,a7,a9 次諧波幅值,如表 1 所示?! ?/div>
表 1.諧波幅值表
根據(jù)表 1,LED 驅(qū)動(dòng)電源的輸入電流的傅里葉級(jí)數(shù)為:
根據(jù)諧波幅值 Inm 與諧波有效值 In 的關(guān)系,諧波有效值:
由式(16) ,則分別計(jì)算各次諧波電流有效值如下(單位 A) : I1=0.040,I3=0.033,I5=0.023,I7=0.012,I9=0.003. 根據(jù)式(5) ,LED 驅(qū)動(dòng)電源的輸入總電流有效值:
將表 1 數(shù)據(jù)代入式(17) ,則輸入總電流有效值 Irms=0.058(A) 。實(shí)際中,這個(gè)輸入電 流值可用測(cè)量真有效值的萬用表測(cè)得或由功率計(jì)的輸入電流顯示屏讀取。 根據(jù)式(6)計(jì)算總諧波失真:
根據(jù)表 1 的諧波幅值數(shù)據(jù),并以基波(一次諧波)分量 100%為基準(zhǔn),制定諧波電流幅值頻譜圖(忽略高于 9 次以上的諧波)見圖 4.
圖4
現(xiàn)按式(7)計(jì)算功率因數(shù) PF,當(dāng)基波相移角 Φ1 為零, cosΦ1=1 則有:
實(shí)測(cè) PF=0.65,二者基本一致。實(shí)際 LED 驅(qū)動(dòng)電源的輸入功率:
諧波的危害
諧波的危害 由以上分析計(jì)算可知,這類 LED 驅(qū)動(dòng)電源輸入電流諧波含量高,對(duì)于這類裝置如功率 不大和少量的使用,其危害性也許不一定會(huì)表現(xiàn)出來,然而若成千上萬的大量密集地使用, 它所產(chǎn)生的諧波電流總量會(huì)嚴(yán)重污染整個(gè)供電系統(tǒng)和其他用電用戶,同時(shí)也使電網(wǎng)電壓波 形發(fā)生畸變。理論和實(shí)踐證明,過大的電流諧波會(huì)產(chǎn)生以下危害:
A. 能使配電設(shè)施如電力變壓器和發(fā)電機(jī)、感性負(fù)載設(shè)備如電動(dòng)機(jī)等磁性材料的鐵芯損 耗 Pkz 得到額外的增加,即增加了由于諧波電流引起的磁滯損耗 Ph 分量和渦流損耗 Pc 分 量,使其過熱而損壞,見式(21) ,其中 fn 是各次諧波電流頻率。
B. 諧波電流通過功率補(bǔ)償設(shè)備的電力電容器,圖5是電容器的等效圖。由圖5可見,當(dāng)由諧波電流引起的容抗與寄生電感引起的感抗相等時(shí)形成諧振,產(chǎn)生強(qiáng)大的諧波電流, 從而導(dǎo)致電力電容器過流或過壓損壞。
圖5
C. 能對(duì)線路上的繼電保護(hù)、儀器儀表、自動(dòng)控制、電子通訊、衛(wèi)星導(dǎo)航以及計(jì)算機(jī)系統(tǒng)產(chǎn)生強(qiáng)烈的干擾,從而引起誤動(dòng)作、出現(xiàn)噪聲等異常現(xiàn)象。
D. 在三相四線制供電系統(tǒng)的中,線路正常時(shí)三相交流電基本平衡,各相電流在中線內(nèi)相互抵消,理論上中線電流接近于零,因此我國(guó)電力系統(tǒng)的中線一般比相線細(xì)。然而過大 的三相三次及高次諧波電流,會(huì)使電網(wǎng)的相電流無法在中線內(nèi)相互抵消,致使中線內(nèi)電流 產(chǎn)生疊加而過流損壞,線路示意圖如圖6此外,中線電流過大引起三相不平衡,即三相電位發(fā)生偏移,嚴(yán)重時(shí)導(dǎo)致大批 LED 燈具燒毀,甚至引起火災(zāi)!
圖6
E. 當(dāng)大量的大功率的高諧波含量的電源設(shè)備使用時(shí),其偶次諧波(a2、a4、a6……) 不容忽視,它使供電回路電流正負(fù)半周不對(duì)稱。尤其是含量較大的二次諧波,它的直流分量使電力變壓器鐵芯產(chǎn)生局部磁化,損耗增大,嚴(yán)重時(shí)會(huì)危及變壓器及電力運(yùn)行安全。 因此,無論是從保護(hù)電力系統(tǒng)安全還是從保護(hù)用電設(shè)備和人身安全來看,嚴(yán)格控制并 限定電流諧波含量,以減少諧波污染造成的危害已成為人們的共識(shí)。
降低 THD 的措施
隨著開關(guān)電源類電子產(chǎn)品的應(yīng)用普及,國(guó)際電工委員會(huì)制定了 IEC61000-3-2、歐盟制 定了 EN60555-2 和我國(guó)制定了 GB17625.1-2003 等法規(guī),對(duì)用電設(shè)備的電壓、電流波形失真 作出了具體限制和規(guī)定。目前這些法規(guī)也適用于 LED 燈具及 LED 驅(qū)動(dòng)電源。 對(duì)于輸入有功功率大于 25W 的 LED 照明燈具,諧波電流不應(yīng)超過表 2 限值。
表 2. C 類設(shè)備的限值
對(duì)于輸入有功功率不大于 25W 的 LED 照明燈具,規(guī)定符合如下的其中一項(xiàng):
a.諧波電流不應(yīng)超過表 3 的第 2 欄中與功率相關(guān)的限值;
表3 D類設(shè)備的限制
b. 用基波電流百分?jǐn)?shù)表示的 3 次諧波電流不應(yīng)超過 86%,5 次諧波不超過 61%;而且, 假設(shè)基波電壓過零點(diǎn)為 0°,輸入電流波形應(yīng)是 60°或之前開始流通,65°或之前有最后 一個(gè)峰值(如果在半個(gè)周期內(nèi)有幾個(gè)峰值) ,在 90°前不應(yīng)停止流通。
圖 1 所示的 LED 驅(qū)動(dòng)電源的輸入功率為 8.8W,根據(jù)表 3 第 2 欄的限值,THD 顯然超標(biāo)。 一個(gè)好的 LED 驅(qū)動(dòng)電源,不僅需要高功率因數(shù) PF,而且還要實(shí)現(xiàn)低 THD,使奇次諧波含量 不超過標(biāo)準(zhǔn)規(guī)定值。
但有的電源設(shè)計(jì)者,為了片面強(qiáng)調(diào)高 PF 而將濾波電容值減小,其結(jié)果是橋式整流器的 導(dǎo)通角增加,PF 增大,但橋式整流器輸出的脈動(dòng)直流電壓導(dǎo)致電路的峰值電流極高,使電 源變換器的功率管等損耗劇增,很容易損壞功率管、高頻變壓器、高頻輸出整流管元件。
目前,性能比較優(yōu)良的 LED 驅(qū)動(dòng)電源,均采用了有源功率因數(shù)校正(Advantage Power Factor Correetion)APFC 電路,圖 7 是一種常用的臨界導(dǎo)通模式(TCM)的單級(jí) PFC 反激式電源變換器示意圖?! ?/div>
圖7
這種電路能使輸入電流即電感電流的波形(見圖 8)與整流二極管輸出的脈動(dòng)電壓波形保持一致的特點(diǎn),不存在整流二極管導(dǎo)通角的影響,因此輸入電流與輸入電壓的具有相同 相位,如圖 9 所示。
圖8
圖9
這種電路的功率因數(shù) PF 與總諧波失真 THD 的關(guān)系如下:
該電路通??梢宰龅?PF≥0.96、THD≤30%,甚至可以使 PF 值接近于 1,輸入電流失真 系數(shù) K=I1 / Irms≤3,THD≤10%. 圖 10 的輸入電路是一種通用的填谷式的無源功率因數(shù)控制(PPFC)電路,對(duì)于輸入功率 較小的 LED驅(qū)動(dòng)電源采用此電路,有成本低、線路簡(jiǎn)單等優(yōu)點(diǎn)。其功率因數(shù)可在 0.85-0.9, 但諧波含量往往會(huì)超過符合規(guī)定。
圖 10
它的電壓和輸入電流的波形如圖 11
圖 11
圖(12)是其測(cè)試結(jié)果,結(jié)果表明諧波含量超標(biāo)。
圖 12
圖 13
針對(duì)圖10電路的這一缺陷,我們可以提出一種改進(jìn)方案,即在無源 PFC 電路中,增加一個(gè)2-5 OHM/2W 的電阻與二極管 D3 串聯(lián)(見圖13),這樣可以有效地降低諧波含量,同時(shí)還能 進(jìn)一步提高PF,對(duì)于這種結(jié)構(gòu)的 LED驅(qū)動(dòng)電源,是一種很有效的改良方法。
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號(hào)和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識(shí)別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開”超級(jí)電容的“外衣”,看看超級(jí)電容“超級(jí)”在哪兒
- DigiKey 誠(chéng)邀各位參會(huì)者蒞臨SPS 2024?展會(huì)參觀交流,體驗(yàn)最新自動(dòng)化產(chǎn)品
- 提前圍觀第104屆中國(guó)電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池
歐勝
耦合技術(shù)
排電阻
排母連接器
排針連接器
片狀電感
偏光片
偏轉(zhuǎn)線圈
頻率測(cè)量?jī)x
頻率器件
頻譜測(cè)試儀
平板電腦