技術(shù)課堂 | QLED:下一代柔性顯示器詳解
發(fā)布時(shí)間:2018-09-10 責(zé)任編輯:wenwei
【導(dǎo)讀】在未來(lái)的電子產(chǎn)品中,所有的設(shè)備組件將被無(wú)線(xiàn)連接到作為信息輸入和/或輸出端口的顯示器上。因此,消費(fèi)者對(duì)下一代消費(fèi)電子產(chǎn)品信息輸入/輸出功能的需求,導(dǎo)致了對(duì)柔性和可穿戴顯示器的需求將會(huì)越來(lái)越大。在眾多下一代發(fā)光顯示器設(shè)備中,量子點(diǎn)發(fā)光二極管(QLEDs)具有獨(dú)特的優(yōu)勢(shì),如色域?qū)挕⒓兌雀?、亮度高、電壓低、外觀極薄等。
柔性顯示器由于其在移動(dòng)和可穿戴電子產(chǎn)品(如智能手機(jī)、汽車(chē)顯示器和可穿戴智能設(shè)備等)的潛在應(yīng)用前景,而受到了極大的關(guān)注。柔性顯示器具有薄、輕、不易破碎的特點(diǎn),且形狀可變,能在曲面上使用。2008年,諾基亞宣布了“Morph” 的創(chuàng)新移動(dòng)顯示概念,這是一種具有柔性、可彎曲和交互功能的顯示。這也被開(kāi)發(fā)成柔性電子紙的早期原型。2013年,三星電子展示了第一個(gè)基于有機(jī)發(fā)光二極管(OLED)的曲面電視,其視野廣闊、色彩純度和對(duì)比度都非常高。兩年后,它們又發(fā)布了一款帶有曲面屏(GalaxyS6)的智能手機(jī),該智能手機(jī)使用了一個(gè)帶有觸摸傳感器的曲面OLED顯示屏,以改善用戶(hù)界面與設(shè)備設(shè)計(jì)。
雖然非平面顯示器已經(jīng)被推廣使用,但目前可用的商業(yè)化顯示器大多是彎曲的顯示器,其形狀是無(wú)法改變的。而下一代顯示器應(yīng)該是可以以各種形式展現(xiàn)的,如圖1所示。智能眼鏡和/或智能隱形眼鏡將用于支持增強(qiáng)現(xiàn)實(shí),在眼鏡或鏡頭后面的自然場(chǎng)景中添加顯示信息;通過(guò)智能手表實(shí)時(shí)顯示,可穿戴傳感器可以測(cè)量使用者的生命體征(如血壓、脈搏、呼吸頻率和體溫)或其他健康信息;或者以紗線(xiàn)的形式制備的LED織入布料中,用于可穿戴顯示器;也可以電子紋身的形式將超薄顯示器附著在人體皮膚上;還可以將可彎曲顯示器作為能調(diào)節(jié)的可折疊平板電腦等。此外,透明的柔性顯示器可以用于智能窗戶(hù)或數(shù)字標(biāo)識(shí),在背景視圖中顯示數(shù)字信息。
圖1:未來(lái)的柔性和可穿戴顯示器
在這種下一代顯示器的研究領(lǐng)域中,主要的技術(shù)目標(biāo)是開(kāi)發(fā)具有機(jī)械變形能力和優(yōu)異器件性能的LEDs。無(wú)機(jī)LEDs的亮度高(106~108cd m-2)和啟亮電壓低(<2V),已被用于開(kāi)發(fā)柔性L(fǎng)ED陣列中。然而,其活性層厚(微米級(jí))且易碎的缺點(diǎn)限制了它們的柔性,而點(diǎn)陣列設(shè)計(jì)也無(wú)法實(shí)現(xiàn)高分辨率顯示(表1)。有機(jī)發(fā)光二極管(OLEDs)和聚合物發(fā)光二極管(PLEDs)已經(jīng)成為一個(gè)熱門(mén)的研究課題,因?yàn)椴捎米园l(fā)光的活性層極大地簡(jiǎn)化了器件的結(jié)構(gòu),從而大大降低了整個(gè)顯示器厚度。最近,LG電子在SID 2017推出了一款66英寸的超大電視,將面板的厚度降低到1毫米。然而,當(dāng)前OLED顯示器的柔性仍然受到厚封裝層的限制(例如,它允許彎曲而不是折疊或拉伸)。因此,開(kāi)發(fā)具有連續(xù)彎曲應(yīng)力的薄膜封裝層,有效防止有機(jī)活性層、有機(jī)電荷輸送層和薄金屬電極氧化是非常重要的。
最近,量子點(diǎn)發(fā)光二極管(QLEDs)因其優(yōu)異的顏色純度(FWHM為30 nm)、高亮度(高達(dá)20萬(wàn)cd m 2)、低工作電壓(開(kāi)啟電壓<2V)以及易加工等特點(diǎn),受到了極大的關(guān)注。無(wú)機(jī)量子點(diǎn)(QDs)的熱穩(wěn)定性和空氣穩(wěn)定性可以增強(qiáng)顯示器的壽命和耐用性。此外,最近在模式技術(shù)方面的進(jìn)步使得達(dá)到超高分辨率的全色(紅色、綠色和藍(lán)色;RGB)QLED陣列,它不能用傳統(tǒng)的顯示處理技術(shù)實(shí)現(xiàn)(例如,OLEDs中的陰影掩蔽)。表1總結(jié)了上述發(fā)光二極管的更詳細(xì)的特征。
為了讓大家了解下一代QLED柔性顯示器,這里將分別介紹基于先進(jìn)量子點(diǎn)技術(shù)的各種器件應(yīng)用,包括柔性白光QLED、可穿戴QLED、柔性透明QLED以及柔性QLED與可穿戴傳感器、微控制器和下一代可穿戴電子設(shè)備的無(wú)線(xiàn)通信單元的集成。
高效QLED材料的設(shè)計(jì)
值得介紹的是最近的QLED的發(fā)展,因?yàn)樗c柔性/可穿戴的QLED的發(fā)展有很大的關(guān)系。在本節(jié)中,我們將討論QDs的材料化學(xué),它能有效地操作QLED。QDs在顯示應(yīng)用方面有許多優(yōu)勢(shì),它們來(lái)自于量子約束效應(yīng)。舉例來(lái)說(shuō),CdSe QDs的發(fā)射波長(zhǎng)可以通過(guò)改變它們的尺寸大小來(lái)發(fā)射整個(gè)可見(jiàn)光波段的光(圖2a)。另外,基于各種半導(dǎo)體材料的QDs提供了較寬的光譜窗口和化學(xué)多功能性(圖2b,c)。高純色也是顯示應(yīng)用的一個(gè)重要特征。與商業(yè)化的高清電視的傳統(tǒng)標(biāo)準(zhǔn)發(fā)射光譜(圖2d)相比,CdSe QDs發(fā)射光譜尖銳(FWHM~30nm)且色域?qū)挕?/div>
圖2:高效QLED材料的設(shè)計(jì)
核/殼QDs結(jié)構(gòu)(i,圖2e)常用于在QLED中,因?yàn)樵赒Ds核上包覆帶隙寬的殼材料,會(huì)鈍化表面缺陷,并將激子限制在核上,從而提高器件穩(wěn)定性與熒光量子效率(PLQY)。例如,CdSe/ZnS QDs的熒光量子效率達(dá)70%~95%,這比未包覆的QDs提高了一個(gè)量級(jí)。但是熒光量子效率的提高并不能保證其EL性能也得到提高。帶電QDs間的俄歇復(fù)合和/或不同QDs之間能量傳遞降低了EL效率。這些電荷轉(zhuǎn)移與能量傳輸過(guò)程受QDs核/殼界面結(jié)構(gòu)的影響,因此,核/殼QDs的結(jié)構(gòu)修飾語(yǔ)優(yōu)化已成為一個(gè)亟待攻克的問(wèn)題。
控制核/殼結(jié)構(gòu)的最簡(jiǎn)單方法是改變殼厚度,殼層厚度對(duì)QDs的載流子動(dòng)力學(xué)以及穩(wěn)定性都有很大的影響。帶有厚殼的QDs不那么閃爍(或不閃爍),因?yàn)殡姾刹▌?dòng)抑制或增強(qiáng)了帶電QDs(圖2 f)的PLQY。在厚殼QDs中增強(qiáng)的PL動(dòng)力學(xué)可以顯著提高器件性能。如圖2 g所示,器件中的QDs很容易被過(guò)度的電荷載體(在本例中為電子)充電。較厚的外殼有助于抑制QDs在光發(fā)射時(shí)的充電,從而提高了EL效率(圖2 h)。核/殼界面的組成對(duì)于載流子的注入和復(fù)合也是十分重要。
最近,有研究報(bào)道了兩種具有相似PLQY和帶隙的CdS/ZnSe量子點(diǎn),即核/殼界面層分別為富CdS和富ZnSe的量子點(diǎn)(圖2 i,j)。其中富ZnSe QDs具有更好的EL性能,這歸功于ZnSe QDs具有較低的載流子注入能壘。目前,核/殼界面的組成能做到可控,但其對(duì)EL性能的影響機(jī)制尚不明確。最主要的問(wèn)題在于沒(méi)有能夠精確表征核/殼QDs三維組成分布的測(cè)試方法。
QDs的結(jié)構(gòu)工程不僅改善了載流子動(dòng)力學(xué)過(guò)程,還提高了光輸出耦合等。例如,基于雙異質(zhì)結(jié)納米棒的QLEDs的性能得到極大提升(最大亮度=7600 cd m-2,峰值EQE=12%)(圖2 k,l)。在這個(gè)結(jié)構(gòu)中,兩個(gè)CdSe發(fā)射器直接連接到CdS納米棒,而CdSe的剩余表面被ZnSe鈍化。最終獲得的峰值EQE(12%)高于其預(yù)期的上限(8%)。這表明雙異質(zhì)結(jié)型納米棒的形狀各向異性和方向帶偏移可以改善光外耦合。
如今,人們對(duì)使用含有Cd元素的QDs越來(lái)越謹(jǐn)慎,因?yàn)镃d對(duì)人體和環(huán)境是有害的。這個(gè)問(wèn)題在靈活/可穿戴顯示器上變得更加重要,在這種顯示器中,設(shè)備與人體直接接觸。例如,歐盟對(duì)有害物質(zhì)指標(biāo)的限制規(guī)定了在消費(fèi)電子產(chǎn)品中使用基于Cd的化合物。目前已提出了一些解決辦法,如封裝或降低Cd的濃度等。但開(kāi)發(fā)高效、無(wú)重金屬的QLED是柔性可穿戴的QLED的商業(yè)成功的必要條件。
III-V族磷化銦(InP)QDs是一種很有前景的替代品,因?yàn)樗鼈兊膸墩▇1.34 eV),能覆蓋了整個(gè)可見(jiàn)的范圍,并有優(yōu)異的PLQYs。盡管已經(jīng)有關(guān)于InP QLED的報(bào)道,但其與Cd-S系化合物的QLED在性能上仍然存在差距,這與人們對(duì)InP QDs的EL過(guò)程還不夠了解有很大關(guān)系。然而,基于綠色的InP核/殼QDs的QLED的最新進(jìn)展(EQE:3.4%,亮度:10,490cd m-2)還是令人興奮的(圖2 m,n)。
QLED的結(jié)構(gòu)和原理
柔性/可穿戴式QLED的器件結(jié)構(gòu)在很大程度上采用了一般的QLED,只是略作修改,以達(dá)到更高的可變形性。QLEDs的一般結(jié)構(gòu)包括陽(yáng)極、電子傳輸層(ETLs)、QD層、空穴傳輸層(HTLs)和陰極(圖3a)。QLED的工作原理如下:(i)電子和空穴從電極中注入電荷傳輸層(CTLs);(ii)將載流子從CTLs中注入QDs;(iii)注入載流子在QDs層進(jìn)行輻射復(fù)合(圖3b)。QLEDs的性能和穩(wěn)定性在很大程度上取決于對(duì)CTL材料的選擇。好的CTLs應(yīng)該具有較高的載流子遷移率,并能很好地平衡電子/空穴注入。根據(jù)所使用的CTLs類(lèi)型,QLEDs的結(jié)構(gòu)可以分為四種不同類(lèi)型(圖3 c):(i)有機(jī)/QD雙層;( ii)全有機(jī)型;(iii)全無(wú)機(jī)型(iv)有機(jī)-無(wú)機(jī)雜化型。不同器件構(gòu)型的峰值EQE與亮度總結(jié),如圖3d,e所示。由于結(jié)構(gòu)i非常簡(jiǎn)單,最早被用于QLEDs器件中。但由于沒(méi)有ETLs,且QDs和CTLs的物理分離差,導(dǎo)致電子注入很難控制,漏電流大,使得器件的最大亮度只有100 cd m-2,EQE<0.01%。為了解決這些問(wèn)題,提出了結(jié)構(gòu)ii,即將QD層夾在有機(jī)HTLs和ETLs之間,形成三明治結(jié)構(gòu)。最早的結(jié)構(gòu)ii型器件的峰值EQE為0.5%,并已提高到6%(圖3d,e)
圖3 QLED的器件結(jié)構(gòu)和操作原理
無(wú)機(jī)CTLs(結(jié)構(gòu)iii)有很高的導(dǎo)電性和環(huán)境穩(wěn)定性(如耐氧抗?jié)瘢T缙谑菍D層夾在p型和n型GaN之間(EQE<0.01%)。后來(lái),出現(xiàn)了由金屬氧化物(如ZnO、SnO2、ZnS、NiO和WO3)組成的全無(wú)機(jī)CTLs的QLEDs。這些器件在長(zhǎng)期使用和高電流密度條件下表現(xiàn)出較強(qiáng)的穩(wěn)定性,對(duì)未來(lái)的柔性顯示應(yīng)用極為有利。然而,由于在無(wú)機(jī)層的嚴(yán)酷沉積過(guò)程中QDs的降解,整體設(shè)備性能較差。這種類(lèi)型(iv)結(jié)構(gòu)(通常是有機(jī)的HTLs和無(wú)機(jī)ETLs)是為了同時(shí)利用無(wú)機(jī)和有機(jī)CTL的優(yōu)勢(shì)而開(kāi)發(fā)的。盡管在最初的工作中,它們的性能并沒(méi)有顯著提高(EQE的0.2%),但是將ZnO納米顆粒引入ETLs是一個(gè)重要的突破。即使以納米粒子的形式存在,ZnO也表現(xiàn)出了良好的電子遷移能力,在器件中引入這些納米顆粒時(shí),底層的QD層不會(huì)發(fā)生顯著的破壞。目前,由于ZnO納米顆粒優(yōu)異的性能(見(jiàn)圖3d,e),使用其作為ETLs的器件已經(jīng)成為QLED研究的標(biāo)準(zhǔn),包括柔性設(shè)備。這些器件的另一個(gè)重要優(yōu)點(diǎn)是超薄的整體層(數(shù)百納米),這使得它們適合于柔性顯示器。例如,最近的一項(xiàng)研究表明,這種高度可變形的可穿戴式發(fā)光二極管的總厚度小于3 μm,包括設(shè)備部件和雙層封裝層。
全彩色顯示器的QDs圖形技術(shù)
為實(shí)現(xiàn)高分辨率的全彩色顯示器(包括柔性顯示器),人們做出了巨大的努力。最大的難點(diǎn)在于可穿戴式和/或便攜式電子設(shè)備,與柔性顯示器相結(jié)合,需要高分辨率和全色形式,在有限的空間內(nèi)呈現(xiàn)生動(dòng)的視覺(jué)信息。隨著顯示技術(shù)的發(fā)展,電視的分辨率達(dá)到了超高的清晰度(UHD,3840×2160),智能手機(jī)的高度為每英寸800像素(ppi)。例如,XperiaXZ Premium(Sony)的像素分辨率為807 ppi。為了顯示自然、清晰的圖像,就需要更高分辨率顯示器,因?yàn)槭褂酶?xì)的像素分辨率的顯示器可以表達(dá)更生動(dòng)的圖像。如果出現(xiàn)頭掛式顯示器或虛擬現(xiàn)實(shí)顯示器,可以應(yīng)用柔性顯示器,則需要實(shí)現(xiàn)更高分辨率的顯示器,通過(guò)放大原始的二維圖像來(lái)投射三維的突觸圖像。目前,有兩種主要的方法可以將不同顏色的QDs和高分辨率的彩色QDs通過(guò)轉(zhuǎn)印或噴墨打印集成到顯示面板上。
由于合成的膠體QDs分散在溶液中,所以在早期的QLED研究中,通常使用旋涂方式制備薄膜,形成單色發(fā)光器件。后來(lái),人們使用彈性體會(huì)結(jié)構(gòu)(如聚二甲基硅氧烷,PDMS)印章來(lái)制備像素化的QD圖案。2008年,有學(xué)者報(bào)道了帶有線(xiàn)條和空間的QLED,是通過(guò)直接旋涂QDs溶液到一個(gè)有結(jié)構(gòu)的印章上。隨后SAIT的研究人員開(kāi)發(fā)了一種動(dòng)態(tài)控制的轉(zhuǎn)印技術(shù),過(guò)程如下:將旋涂得到的QD薄膜快速?gòu)淖越M裝的單層處理過(guò)的基板上取出,放到所需的基底上(圖4a)。由于在印章上施加壓力(圖4b),相比之下,轉(zhuǎn)印后的QD層空缺和裂縫都減少。此堆積良好的QD層可以使器件的漏電流降低、電荷輸運(yùn)提高(圖4 c)。使用這種轉(zhuǎn)印方法,成功制得像素為320×240的4英寸大的全彩色柔性顯示屏。
圖4 多色QLEDs的圖案技術(shù)
除了轉(zhuǎn)印技術(shù)外,噴墨打印技術(shù)也引起了人們的廣泛關(guān)注,因?yàn)樗梢源蛴∷璧膱D案,不需要光護(hù)金屬掩膜板。然而,傳統(tǒng)的噴墨打印方法不適合制備精細(xì)圖案的QD薄膜。因?yàn)樘岣邍娔€(wěn)定性,往往需要加入添加劑來(lái)提高QDs的分散性。而加入的添加劑會(huì)影響QDs薄膜中的電荷有效傳輸,從而降低OLED的電學(xué)性能。為了解決這一問(wèn)題,研究人員使用電動(dòng)力噴墨打印技術(shù)(圖4 g,h),可以制備~5μm精細(xì)的QD圖案。該技術(shù)使用電場(chǎng)將QD墨水以窄幅的寬度噴出,由此產(chǎn)生的QD圖案顯示出均勻的線(xiàn)厚度。使用這個(gè)印刷方法,紅色和綠色的QD像素分辨率可達(dá)到商業(yè)顯示要求。
柔性白光QLEDs
白色發(fā)光二極管(WLED)被廣泛應(yīng)用于大面積照明設(shè)備和/或顯示面板的背光光源。正在使用的無(wú)機(jī)WLED陣列是點(diǎn)發(fā)射,而不是面發(fā)射,導(dǎo)致區(qū)域的不均勻性。有機(jī)WLED被認(rèn)為是一個(gè)不錯(cuò)的選擇,但存在壽命和成本的問(wèn)題。因此,膠體QDs因其量子效量高、發(fā)射光譜大小可調(diào)、發(fā)射帶寬窄和光/熱穩(wěn)定等特性,被用作WLED的發(fā)光組件。目前,人們?cè)诨赒Ds的高效WLED進(jìn)行了大量研究。
有報(bào)道采用紅色CdSe/CdS/ZnS/CdSZnS)、綠色(CdSe/ZnS/CdSZnS)與藍(lán)色無(wú)機(jī)LED結(jié)合形成的WLED背光源,和液晶顯示器組成的46英寸的電視面板。然而,這種顏色轉(zhuǎn)換的WLED量子效率低,因?yàn)樾兜腝Ds、內(nèi)部光散射、光漂白和不平電荷載流子重新吸收了高能光子。另外,傳統(tǒng)光源的發(fā)射光譜寬,導(dǎo)致發(fā)光效率和顏色呈現(xiàn)指數(shù)(CRI)低。
為了提高WLED的CRI和發(fā)光效率,場(chǎng)致發(fā)光的白色QLED使用不同顏色的QDs混合而成的(圖5a)。2007年,報(bào)告了一種使用單層隨機(jī)混合QDs的白色EL器件。通過(guò)控制RGB QDs的混合比,可以很容易地調(diào)節(jié)EL頻譜,而白色QLED顯示改進(jìn)的EQE和CRI分別為0.36%和81%。人類(lèi)的眼睛可以很容易地感知到波長(zhǎng)在440~ 650nm之間的光,因此,在這個(gè)范圍內(nèi)調(diào)優(yōu)發(fā)射光譜可以提高CRI值。Bae等人控制白色QLEDs的發(fā)射光譜,通過(guò)精確調(diào)整不同顏色的量子點(diǎn)的混合比(圖5 b,c)。因此,窄帶寬的QD發(fā)射器(< 30 nm)單色QD的顏色純度排放增加,但也會(huì)使寬光譜發(fā)射光譜的不同顏色之間的差距,降低國(guó)際wLED的價(jià)值。為了解決這個(gè)問(wèn)題,排放峰值的數(shù)量可以增加。這就導(dǎo)致了更完全的可見(jiàn)光譜和更高的CRI值。CRI的價(jià)值從14個(gè)增加到93個(gè),因?yàn)榛旌螿Ds的類(lèi)型從兩個(gè)(藍(lán)色和黃色的QD)增加到4個(gè)(藍(lán)色,青色,黃色和紅色)。白色QLEDs基于量子點(diǎn)隨機(jī)混合有優(yōu)勢(shì),比如容易處理和降低成本,但inter-particle不同顏色的量子點(diǎn)之間的能量傳遞誘發(fā)電流效率低,可憐的EQE,和紅移EL。因此,混合比和混合結(jié)構(gòu)量子點(diǎn)的不同應(yīng)該精確優(yōu)化獲得平衡的白色EL。
圖5 柔性白光QLEDs
為了提高EL效率,SAIT采用了“選擇-放置-轉(zhuǎn)印技術(shù)”(圖5d),層層堆積QD層。通過(guò)調(diào)整RGB QD層的堆積序列,能有效抑制非輻射能量轉(zhuǎn)移(如G→B),從而實(shí)現(xiàn)真正的白色EL(圖5 e,f)。但是,垂直方向上堆積的QD不可避免地存在粒子間的能量轉(zhuǎn)移(如G→R或B→R)。這是因?yàn)橐驗(yàn)椴煌伾腝D在電荷注入方向堆疊。而且隨著外加電壓的增加,QD的帶隙會(huì)增大,使得EL譜會(huì)發(fā)生藍(lán)移。
基于像素化RGB QD陣列的白光QLED可以解決這些問(wèn)題(圖5 g j)。最近,科研人員使用凹版轉(zhuǎn)移印花方法,獲得了高分辨率的RGB像素陣列(> 2400 ppi)(圖5h,i)。如圖5所示,在相同波長(zhǎng)(440納米)激發(fā)下,像素化QD層和藍(lán)色QD層的載流子壽命是相似的。但是,由于混合QD層中QDs之間會(huì)發(fā)生能量轉(zhuǎn)換,使得RGB混合層的載流子壽命要短得多。這個(gè)結(jié)果表明,像素化的RGB WQLED比使用混合QDs的WQLED更有效。如果晶體管能夠單獨(dú)控制RGB QD像素的EL,那么像素化的QLED在不同亮度下會(huì)表現(xiàn)出更高的性能。
柔性透明QLEDs
制造適合于窗戶(hù)、眼鏡和透明家居用品的透明顯示器,可以顯著增加顯示應(yīng)用的范圍,允許將視覺(jué)信息投射到背景上,而不會(huì)影響其原有的外觀和背景視圖。柔性透明顯示器可以支持新穎的曲面顯示應(yīng)用,如智能汽車(chē)窗口、可穿戴智能手表和公共標(biāo)牌顯示。然而,到目前為止,柔性透明顯示器的性能明顯低于不透明的顯示器,這主要是受透明電極的限制。電極需要高導(dǎo)電性,高透明度,以及適當(dāng)?shù)哪芰克剑员阃瑫r(shí)進(jìn)行有效的充電。表2總結(jié)了之前報(bào)告的透明QLED的光學(xué)和電氣性能,包括透明度、電流效率和設(shè)備壽命。為了在透明發(fā)光二極管中獲得柔性,薄金屬薄膜(例如,Au、Ag、Ca/Ag和Al)被用作半透明的電極(圖6a)。降低金屬薄膜的厚度,從100nm到小于10納米,保持了最初的光發(fā)射波長(zhǎng)。
圖6 柔性、半透明QLEDs
然而,不幸的是,這種金屬薄膜犧牲了器件的透明度,尤其是在低電阻電極上。事實(shí)上,半透明的QLED的透明度小于60%,而且隨著視角的增加,它會(huì)變得更低(圖6b)。目前,石墨烯對(duì)于下一代透明電極來(lái)說(shuō)是一種很有吸引力的材料,因?yàn)樗暮穸确浅1。该鞫雀?,而且電阻率低。Seo等人報(bào)告了完全透明的QLED,使用非納米粒子(NP)-摻雜石墨烯和Ag納米線(xiàn)(NWs)-裝飾石墨烯作為陽(yáng)極和陰極(圖6 c)。在保持高透明度和低面電阻(圖6d)的同時(shí),將Au NPs和AgNWs的連接轉(zhuǎn)化為石墨烯層,有效地調(diào)節(jié)電極的能量水平。為了防止底層排放層的污染,科研人員用干式印刷法代替?zhèn)鹘y(tǒng)的鏟挖工藝,形成了工程石墨烯電極。然而,由于高接觸電阻,被轉(zhuǎn)移的石墨烯層表現(xiàn)出較高的面電阻,從而降低了QLEDs的EL性能,包括高電壓和低亮度(圖6e)。
AgNWs也被用于透明電極。在保持高透明度的同時(shí),由于其高度的多孔結(jié)構(gòu),超細(xì)AgNWs的滲透式裝配提供了低電阻(<10 Ωsq−1)。由于Ag NWs很容易通過(guò)旋涂或刀涂的方式沉積在目標(biāo)表面,基于Ag NWs的QLED可以同時(shí)兼具低成本和柔性的優(yōu)勢(shì)。如有人使用AgNWs作為QLED的透明電極,獲得器件亮度高(~25000 cd m2)、透明度高(70%)(圖6 f,g)。盡管石墨烯和Ag NWs已經(jīng)有很大的進(jìn)展,但它們的器件性能還需要進(jìn)一步改進(jìn)。
透明導(dǎo)電氧化物(TCOs)在過(guò)去的幾十年里一直是使用最廣泛的透明電極。然而,由于在嚴(yán)酷的沉積過(guò)程中(如濺射)對(duì)底層發(fā)射物質(zhì)的機(jī)械和/或化學(xué)損害,制造基于TCOs的透明頂電極仍然具有挑戰(zhàn)性。通過(guò)預(yù)沉淀厚無(wú)機(jī)緩沖層和頂部TCO電極連續(xù)濺射過(guò)程,以防止對(duì)QD層的損害,并形成CTLs之間不需要的傳導(dǎo)路徑(圖6 h)。然而,與不透明的發(fā)光裝置相比,透明的發(fā)光裝置仍然顯示出較低的EL特性,原因是設(shè)備內(nèi)的電荷載體不平衡。此外,厚厚的ETL和/或無(wú)機(jī)緩沖層增加了硬度,從而降低了QLEDs的柔性。2017年,Kim組報(bào)道了由ZnO NPs和超薄氧化鋁覆蓋層組成的ETL結(jié)構(gòu)(圖6i)。采用2納米厚氧化鋁超層對(duì)無(wú)機(jī)ETL結(jié)構(gòu)進(jìn)行了50次改造,有效地保護(hù)了發(fā)射層和平衡電子/空穴注入到QDs中,從而導(dǎo)致了高度透明(可見(jiàn)光范圍達(dá)84%)和明亮(~43000cd m-2)QLED。他們還報(bào)告了可折疊和可伸縮的透明QLED,使用聚對(duì)二甲苯-環(huán)氧雙層膜作為封裝和扣緊裝置結(jié)構(gòu)(圖6j,k)。超薄柔性透明QLED,在千次彎曲試驗(yàn)后仍顯示出高度穩(wěn)定的EL,原因是設(shè)計(jì)的ETL層并沒(méi)有增加QLEDs的整體厚度,而易脆的ITO電極則位于偽中性機(jī)械平面上。這些超薄的透明透明發(fā)光二極管可以被集成到各種彎曲物體的表面,被認(rèn)為是向智能的物聯(lián)網(wǎng)(IoTs)邁出的重要一步。
可穿戴的量子點(diǎn)顯示
柔性QLED最具前景的應(yīng)用之一是可穿戴顯示器。皮膚安裝的電子產(chǎn)品為先進(jìn)的可穿戴診斷/治療解決方案提供了新的途徑。這些顯示器可以實(shí)時(shí)顯示可穿戴傳感器的監(jiān)控?cái)?shù)據(jù)然而,可穿戴顯示器仍然面臨著重大挑戰(zhàn),如傳統(tǒng)柔性顯示器的厚度和剛度。與有機(jī)發(fā)光二極管相比,QLEDs的高水/空氣穩(wěn)定性可以使封裝層更薄,從而大大提高了設(shè)備的靈活性。
柔性的QLED通常是基于在柔性寵物襯底上的ITO電極制造的,其厚度在幾百微米的范圍內(nèi)。由于厚底物和易碎的ITO電極,顯示器的最小彎曲半徑限制在幾十毫米以?xún)?nèi)。Demir組報(bào)道了像貼紙一樣的頂部發(fā)光的QLED,它是以熱/溶劑穩(wěn)定性的聚酰亞胺(PI)薄膜為基底,Ag薄膜(18nm)作為半透明電極(圖7 a,b)。薄膜型QLED可在各種物體的曲面上很容易變形和疊層,包括一個(gè)薄板的邊緣和一個(gè)吉祥物娃娃的胸部(圖7 c)。
圖7 可穿戴的量子點(diǎn)顯示
對(duì)于可穿戴顯示器來(lái)說(shuō),建立一個(gè)生物兼容的超薄封裝層是至關(guān)重要的。Choi等人報(bào)告說(shuō),在電子紋身的顯示器(圖7d)中使用了環(huán)氧樹(shù)脂雙層超薄發(fā)光二極管。美國(guó)食品及藥物管理局(食品和藥物管理局)批準(zhǔn)了生物相容性的parylene-C薄膜,它與皮膚有良好的界面,可以防止它出現(xiàn)皮疹或瘙癢。超薄環(huán)氧樹(shù)脂層還能防止在底層ITO電極濺射過(guò)程中對(duì)二烯薄膜造成任何損壞。雙層封裝的厚度是1.2μm,而QLED的總厚度為2.6μm(圖7e)。當(dāng)脆弱的ITO電極位于中性機(jī)械平面附近時(shí),拉伸和壓縮應(yīng)可以得到補(bǔ)償,超薄的QLED則可以在沒(méi)有機(jī)械損傷的情況下自由變形,即使是在柔軟的人皮上也能達(dá)到相同效果(圖7 f)。在具有曲率半徑的波狀變形狀態(tài)下,適用于柔性QLED的峰值應(yīng)變小于ITO電極的斷裂應(yīng)變(2.2%),這使得高度可變形的柔性QLED。此外,超薄封裝層使設(shè)備防水,有效地保護(hù)了高濕度條件下的可穿戴設(shè)備(圖7 g)。通過(guò)應(yīng)用一個(gè)被動(dòng)矩陣陣列設(shè)計(jì),可穿戴的QLED可以在滾動(dòng)和揉皺的物體上顯示不同信息(圖7 h)。圖7i顯示了在表皮QLED上顯示的連續(xù)圖像??纱┐魇桨l(fā)光二極管能最大限度地降低功耗,抑制過(guò)熱,這是由于逐行被動(dòng)矩陣操作過(guò)程,確保了可穿戴顯示器在人皮膚上的安全運(yùn)行。
與其他電子設(shè)備集成的QLED
在本節(jié)中,我們將討論與其他電子元件集成的柔性QLED,如傳感器、記憶、控制器和藍(lán)牙設(shè)備,如何用于下一代便攜式和/或可穿戴式電子/光電系統(tǒng)。集成電子系統(tǒng)的柔性形式因素將為可穿戴顯示器提供新的設(shè)計(jì)平臺(tái)。
一個(gè)基于柔性QLED的有趣應(yīng)用是一種智能的壓力敏感顯示器,它可以實(shí)時(shí)測(cè)量、存儲(chǔ)和顯示外部的機(jī)械變形。Son等人集成了基于MoS2的電阻隨機(jī)存取存儲(chǔ)器(ReRAM)設(shè)備和帶QLED陣列的壓力傳感器。壓力傳感器的測(cè)量數(shù)據(jù)首先存儲(chǔ)在二硫化鉬ReRAM數(shù)組,之后書(shū)面數(shù)據(jù)可以直觀地通過(guò)QLED陣列顯示(圖8 a、b)??纱┐鱍LEDs可以集成到一個(gè)多路復(fù)用透明觸摸傳感器陣列作為輸入端口的用戶(hù)意圖(圖8 c)。超薄QLED也可以與透明的力觸覺(jué)傳感器集成(即:壓力傳感器和觸控傳感器)(圖8d)。軟集成的電子系統(tǒng)可以通過(guò)范德華力單獨(dú)壓在人的皮膚上,即使在畸形狀態(tài)下也能穩(wěn)定運(yùn)行(圖8e)。這些系統(tǒng)級(jí)集成的例子證實(shí)了可穿戴式顯示器集成的新型可穿戴電子系統(tǒng)的可行性。
圖8 可穿戴QLEDs與其他電子器件/設(shè)備的集成
可穿戴QLED是另一個(gè)靈活的QLED的應(yīng)用例子,可以作為可穿戴基于光的生物傳感器的光源。在2017年,Kim等人報(bào)告了可穿戴光體(PPG)傳感器,這些傳感器結(jié)合了可伸縮的QLED和QD光電探測(cè)器。基于石墨烯的透明電極,為基于QDa的發(fā)光二極管和PDs提供了極端的可彎曲性。QLED被轉(zhuǎn)移到一個(gè)預(yù)先拉伸的彈性體上,形成一個(gè)彎曲的結(jié)構(gòu),并顯示出70%的可拉伸性。對(duì)于PPG傳感器,可伸縮的QLED和PDs分別安裝在指尖和側(cè)面,分別作為光源和檢測(cè)器進(jìn)行(圖8 f)。吸收光譜的變化與脈沖的相關(guān)性很好。可穿戴的PPG傳感器還能準(zhǔn)確測(cè)量壓力的細(xì)微變化(圖8 g)。這種由基于QLED和PDs組成的光電設(shè)備可以用于各種可穿戴傳感器應(yīng)用,如人類(lèi)運(yùn)動(dòng)檢測(cè)和/或心率測(cè)量。在完全集成的可穿戴電子設(shè)備中,QLEDs的另一個(gè)應(yīng)用例子是一個(gè)靈活的印刷電路板(FPCB),它集成了QLED顯示屏、觸摸傳感器、微控制器模塊、無(wú)線(xiàn)單元、其他物理傳感器和電源(圖8 h-j)。觸摸傳感器與一個(gè)QLED顯示屏共同嵌入,同時(shí)保持超薄的外形(5.5μm)。觸摸界面通過(guò)改變QLED顯示(圖8i)中的傳感模式,提供了一個(gè)交互式用戶(hù)界面。8×8大小的超薄QLED被動(dòng)矩陣陣列貼在人的手臂上,可以實(shí)時(shí)顯示由可穿戴傳感器(圖8i,右)測(cè)量出的溫度和步數(shù)信息(圖8j)。這種完全集成的可穿戴QLED顯示屏可以為先進(jìn)的可穿戴醫(yī)療電子系統(tǒng)提供新的可能。
總的來(lái)說(shuō),人們?cè)赒D合成方法以及器件結(jié)構(gòu)優(yōu)化方面做出了巨大的努力,來(lái)提高QLED的性能。盡管目前還面臨著器件壽命、藍(lán)光效率低、Cd基量子點(diǎn)毒性等挑戰(zhàn),QLED還是表現(xiàn)出超越其他LED的優(yōu)異特性,如高純度、高亮度和低電壓、高分辨率RGB陣列模式和超薄外形等。這些優(yōu)點(diǎn)使得QLED成為下一代顯示應(yīng)用的前景,特別是在柔性/可穿戴電子設(shè)備領(lǐng)域。隨著QD加工技術(shù)、封裝技術(shù)、新型器件/系統(tǒng)設(shè)計(jì)的不斷改進(jìn)與提高,QLED可以被用于更先進(jìn)的器件/設(shè)備上,如柔性白光QLED和高度透明的柔性QLEDs。新興QLED的每一項(xiàng)關(guān)鍵技術(shù)都為新電子和光電技術(shù)提供了許多機(jī)會(huì)。這些QLED可以與各種可穿戴電子設(shè)備成功集成,包括可穿戴傳感器、數(shù)據(jù)存儲(chǔ)模塊、觸控界面和靈活的無(wú)線(xiàn)數(shù)據(jù)傳輸設(shè)備。未來(lái),其他家庭應(yīng)用和移動(dòng)電子設(shè)備將通過(guò)無(wú)線(xiàn)連接,可穿戴顯示器將為用戶(hù)提供信息。這些技術(shù)進(jìn)步為柔性QLED和相關(guān)下一代顯示器的前景提供了光明的前景。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 中微公司成功從美國(guó)國(guó)防部中國(guó)軍事企業(yè)清單中移除
- 華邦電子白皮書(shū):滿(mǎn)足歐盟無(wú)線(xiàn)電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
單向可控硅
刀開(kāi)關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車(chē)
電動(dòng)工具
電動(dòng)汽車(chē)
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線(xiàn)通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
友情鏈接(QQ:317243736)
我愛(ài)方案網(wǎng) ICGOO元器件商城 創(chuàng)芯在線(xiàn)檢測(cè) 芯片查詢(xún) 天天IC網(wǎng) 電子產(chǎn)品世界 無(wú)線(xiàn)通信模塊 控制工程網(wǎng) 電子開(kāi)發(fā)網(wǎng) 電子技術(shù)應(yīng)用 與非網(wǎng) 世紀(jì)電源網(wǎng) 21ic電子技術(shù)資料下載 電源網(wǎng) 電子發(fā)燒友網(wǎng) 中電網(wǎng) 中國(guó)工業(yè)電器網(wǎng) 連接器 礦山設(shè)備網(wǎng) 工博士 智慧農(nóng)業(yè) 工業(yè)路由器 天工網(wǎng) 乾坤芯 電子元器件采購(gòu)網(wǎng) 亞馬遜KOL 聚合物鋰電池 工業(yè)自動(dòng)化設(shè)備 企業(yè)查詢(xún) 工業(yè)路由器 元器件商城 連接器 USB中文網(wǎng) 今日招標(biāo)網(wǎng) 塑料機(jī)械網(wǎng) 農(nóng)業(yè)機(jī)械 中國(guó)IT產(chǎn)經(jīng)新聞網(wǎng) 高低溫試驗(yàn)箱
?
關(guān)閉
?
關(guān)閉