-
運(yùn)算放大器參數(shù)的簡(jiǎn)易測(cè)量“指南”
運(yùn)算放大器是差分輸入、單端輸出的極高增益放大器,常用于高精度模擬電路,因此必須精確測(cè)量其性能。但在開(kāi)環(huán)測(cè)量中,其開(kāi)環(huán)增益可能高達(dá)107或更高,而拾取、雜散電流或塞貝克(熱電偶)效應(yīng)可能會(huì)在放大器輸入端產(chǎn)生非常小的電壓,這樣誤差將難以避免。
2024-12-20
-
納伏級(jí)靈敏度的低噪聲儀表放大器是如何構(gòu)建的?
構(gòu)建具有納伏級(jí)靈敏度的電壓測(cè)量系統(tǒng)會(huì)遇到很多設(shè)計(jì)挑戰(zhàn),目前較好的運(yùn)算放大器(比如低噪聲AD797)可以實(shí)現(xiàn)低于1nV/ Hz的噪聲性能(1 kHz),但低頻率噪聲限制了可以實(shí)現(xiàn)的噪聲性能為大約50 nV p-p(0.1 Hz至10 Hz頻段內(nèi))。
2024-12-17
-
對(duì)比雙電源分立式和集成式儀表放大器
設(shè)計(jì)分立式儀表放大器 (IA) 與集成式 IA 的優(yōu)點(diǎn)和缺點(diǎn)有很多,而且經(jīng)常爭(zhēng)論不休。需要考慮的一些變量包括印刷電路板 (PCB) 面積、增益范圍、性能(隨溫度變化)和成本。本文的目的是比較三種雙電源 IA 電路:使用四路運(yùn)算放大器 (op amp) 的分立式 IA、具有集成增益設(shè)置電阻器 (RG) 的通用 IA 和帶有外部 RG 的精密 IA。
2024-12-13
-
學(xué)子專(zhuān)區(qū)—ADALM2000實(shí)驗(yàn):調(diào)諧放大器級(jí)—第2部分
正如我們?cè)谏弦唤M實(shí)驗(yàn)中了解到的,二階LC諧振電路通常用作放大器級(jí)中的調(diào)諧元件。如圖1所示,簡(jiǎn)單的并聯(lián)LC諧振電路可以產(chǎn)生電壓增益,但需要消耗電流來(lái)驅(qū)動(dòng)阻性負(fù)載。緩沖放大器(如射極跟隨器)可以提供所需的電流(或功率)增益來(lái)驅(qū)動(dòng)負(fù)載。
2024-12-11
-
簡(jiǎn)單的無(wú)源衰減器
衰減器與放大器相反,因?yàn)樗鼈儠?huì)降低增益,而電阻分壓器電路是典型的衰減器。給定網(wǎng)絡(luò)中的衰減量由以下比率確定:輸出/輸入。例如,如果電路的輸入電壓為 1 伏 (1V),輸出電壓為 1 毫伏 (1mV),則衰減量為 1mV/1V,等于 0.001 或減少 1,000 分之一。
2024-12-04
-
射頻全差分放大器(FDA)如何增強(qiáng)測(cè)試系統(tǒng)?射頻采樣模數(shù)轉(zhuǎn)換器(ADC)來(lái)幫忙!
為了在無(wú)線(xiàn)通信系統(tǒng)中實(shí)現(xiàn)更高的數(shù)據(jù)速率以及在雷達(dá)中使用更窄的脈沖來(lái)解析近距離目標(biāo),對(duì)測(cè)試和測(cè)量?jī)x器的性能和帶寬提出了更高的要求。高帶寬示波器和射頻數(shù)字轉(zhuǎn)換器等射頻(RF)測(cè)試和測(cè)量?jī)x器可使用射頻采樣模數(shù)轉(zhuǎn)換器(ADC),對(duì)從直流到數(shù)千兆赫的信號(hào)同時(shí)進(jìn)行數(shù)字化。
2024-11-25
-
ADALM2000實(shí)驗(yàn):變壓器耦合放大器
升降壓變壓器的基本定義是一種將輸入的交流電壓轉(zhuǎn)換為比原電壓更高(升壓)或更低(降壓)的器件。此外還有可用于將電路與地隔離的變壓器,這種變壓器被稱(chēng)為隔離變壓器。本文將側(cè)重討論變壓器的另一種用途,即用于匹配電路阻抗以實(shí)現(xiàn)最大功率傳輸。
2024-11-24
-
在發(fā)送信號(hào)鏈設(shè)計(jì)中使用差分轉(zhuǎn)單端射頻放大器的優(yōu)勢(shì)
傳統(tǒng)的射頻 (RF) 發(fā)送信號(hào)鏈通常使用數(shù)模轉(zhuǎn)換器 (DAC) 來(lái)生成基帶信號(hào)。然后,使用射頻混頻器和本地振蕩器將此信號(hào)上變頻為所需的射頻頻率。射頻 DAC 技術(shù)取得進(jìn)步,現(xiàn)在允許直接以所需的射頻頻率生成信號(hào),從而顯著簡(jiǎn)化射頻發(fā)送信號(hào)鏈的設(shè)計(jì)和復(fù)雜性。
2024-11-19
-
在更寬帶寬應(yīng)用中使用零漂移放大器的注意事項(xiàng)
零漂移運(yùn)算放大器使用斬波、自穩(wěn)零或這兩種技術(shù)的結(jié)合來(lái)消除不需要的低頻誤差源,例如失調(diào)和1/f噪聲。傳統(tǒng)上,此類(lèi)放大器僅用于低帶寬應(yīng)用中,因?yàn)檫@些技術(shù)在較高頻率時(shí)會(huì)產(chǎn)生偽像。只要系統(tǒng)設(shè)計(jì)時(shí)考慮了高頻誤差,例如紋波、毛刺和交調(diào)失真(IMD)等,較寬帶寬的解決方案也可以受益于零漂移運(yùn)算放大器的出色直流性能。
2024-11-19
-
全差分放大器為精密數(shù)據(jù)采集信號(hào)鏈提供高壓低噪聲信號(hào)
全差分放大器(FDA)具有差分輸入和差分輸出,其輸出共模由直流(DC)輸入電壓獨(dú)立控制,主要用在數(shù)據(jù)采集系統(tǒng)中模數(shù)轉(zhuǎn)換的前端,用于將信號(hào)調(diào)理為合適的電平以供下一級(jí)(通常是模數(shù)轉(zhuǎn)換器(ADC))使用。FDA一般采用單芯片設(shè)計(jì),電源電壓較小,因此輸出動(dòng)態(tài)范圍有限。本文將介紹具有可調(diào)共模輸出的高壓低噪聲FDA的設(shè)計(jì)方法。本文還完整分析了FDA噪聲,以及其對(duì)高性能數(shù)據(jù)采集系統(tǒng)信號(hào)鏈的總體信噪比(SNR)的影響。
2024-11-05
-
三極管電路輸入電壓阻抗
利用三極管,?搭建單管共射反向放大器,?放大器的增益與多個(gè)因素有關(guān)系,也和輸入阻抗成反比。如何來(lái)測(cè)量單管運(yùn)放的輸入阻抗呢? 下面在 LTspice中通過(guò)仿真進(jìn)行測(cè)量。
2024-10-27
-
預(yù)補(bǔ)償方法以減少Class D功率放大器的爆裂噪聲
如今,Class D功率放大器在音頻系統(tǒng)中被廣泛使用。然而,在放大器啟動(dòng)或關(guān)閉時(shí),以及在靜音/取消靜音切換期間,揚(yáng)聲器中經(jīng)常會(huì)出現(xiàn)爆裂聲或點(diǎn)擊聲。這些噪音可能會(huì)被聽(tīng)到,并使用戶(hù)感到不適。在音頻系統(tǒng)中靜音功率放大器是避免在啟動(dòng)或關(guān)閉期間出現(xiàn)爆裂聲的有效方法。此外,音頻系統(tǒng)有時(shí)播放音樂(lè),有時(shí)停止播放,這需要頻繁地靜音或取消靜音放大器。因此,爆裂聲是頻繁靜音和取消靜音控制的關(guān)鍵問(wèn)題。本文討論了靜音/取消靜音過(guò)渡期間爆裂聲的發(fā)生原因,并設(shè)計(jì)了相應(yīng)的方法來(lái)抑制這些噪音。
2024-09-29
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點(diǎn)”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務(wù)平臺(tái)
- 中微公司成功從美國(guó)國(guó)防部中國(guó)軍事企業(yè)清單中移除
- 華邦電子白皮書(shū):滿(mǎn)足歐盟無(wú)線(xiàn)電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall