你的位置:首頁 > RF/微波 > 正文

射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作

發(fā)布時間:2020-04-20 來源:李樹琪 責(zé)任編輯:wenwei

【導(dǎo)讀】以LDMOS(橫向擴散金屬氧化物半導(dǎo)體)為代表的射頻大功率器件已經(jīng)在民用通信市場以其優(yōu)異的性能和低廉的價格而得到越來越廣泛的應(yīng)用,對于這種射頻大功率器件的器件水平和能力評估也越來越受到關(guān)注。
 
本文基于負(fù)載牽引系統(tǒng),采用簡單、便捷以及可重復(fù)使用的理念,使用常規(guī)的微帶線階梯型阻抗變換器電路為基礎(chǔ),充分考慮在應(yīng)用測試中的偏置電路,進行前期使用ADS(Advanced Design System)仿真加后期驗證,設(shè)計制造了低耗無串?dāng)_的TRL(Though Reflected Delay)校準(zhǔn)件,為測試得到射頻大功率器件的射頻性能奠定了優(yōu)異的基礎(chǔ)。
 
隨著通信的日益發(fā)展以及半導(dǎo)體功率器件研究和生產(chǎn)技術(shù)的突飛猛進,上世紀(jì)90年代末以前主要以硅雙極型晶體管和砷化鎵場效應(yīng)管為核心的射頻微波功率放大器正被增益、線性度和輸出功率等方面更加優(yōu)秀的產(chǎn)品所取代(硅基射頻LDMOS以及氮化鎵場效應(yīng)管)。這同時也對這些新技術(shù)、新產(chǎn)品的性能評估提出了更高的要求。目前國內(nèi)以945-960 MHz頻段的RF LDMOS功率管產(chǎn)品(單裸管芯輸出功率達(dá)到180瓦,線性增益達(dá)到19dB,效率達(dá)到70%,電壓駐波比達(dá)到10:1)已經(jīng)達(dá)到了實業(yè)化的目標(biāo)。較之于傳統(tǒng)上常用的SOLT校準(zhǔn)(適用于同軸校準(zhǔn)),TRL校準(zhǔn)對于在非同軸環(huán)境下進行射頻大功率器件的測試來說是一種非常精確的校準(zhǔn)方式。這種校準(zhǔn)方法的優(yōu)點在于其校準(zhǔn)準(zhǔn)確度只依賴于傳輸線的特征阻抗而不是其他標(biāo)準(zhǔn),反射標(biāo)準(zhǔn)的反射系數(shù)和傳輸系數(shù)的長度都可以在校準(zhǔn)中由計算得出,很好地避免了一些測試板引入的誤差,更能準(zhǔn)確地反映被測器件的性能。
 
TRL校準(zhǔn)件的要求
 
基于目前通用的射頻測試板材,我們選用4350B型板材,這種板材制造標(biāo)稱的介電常數(shù)εr = 3.48,損耗因子為0.0037,板材厚度選取30mil,走線銅厚選取17μm。此次需要完成的目標(biāo)頻段是2.0GHz~2.5GHz,制作出來的Reflect、Though以及Delay校準(zhǔn)件均能滿足在此頻段內(nèi)反射系數(shù)Г(S11)<-10dB,傳輸系數(shù)T(S22)<-0.9dB。器件根部原始設(shè)計阻抗根據(jù)經(jīng)驗設(shè)定為2.5Ω,測試電路輸入輸出端口設(shè)計阻抗為通信系統(tǒng)設(shè)備通用的50Ω,端口采用常用的SMA型端子作為射頻信號輸入輸出的物理接口。
 
TRL校準(zhǔn)件的構(gòu)建
 
因為最終目的是為基于Load-Pull系統(tǒng)的器件做阻抗提取和性能評估,對于校準(zhǔn)件的版圖設(shè)計基本需考慮通用性和成本,即在射頻信號主路采用微帶線階梯型阻抗變換器的基礎(chǔ)上,還需要在設(shè)計過程中考慮器件應(yīng)用時所需要的直流偏置電路。
 
Part 1 射頻信號主路設(shè)計
 
1、射頻信號主路設(shè)計由于從器件根部的2.5Ω變換到測試電路輸入輸出端口的50Ω,而且需要實現(xiàn)2.0GHz~2.5GHz的頻段跨越,為了確保在寬頻帶上能獲得良好的匹配性能,因此設(shè)計階梯為4級,對應(yīng)設(shè)計的中間變換阻抗為:5Ω、10Ω、20Ω??梢圆捎孟旅娴淖杩褂嬎愎接嬎悖?/div>
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
 
其中,W為線寬,T為銅線厚度,εr為板材的介電常數(shù)。
 
在此我們運用Linecalc這個小軟件來計算和確定微帶線寬度,如圖1所示。
 
通過軟件計算得出微帶線寬度與設(shè)定阻抗的關(guān)系如表1:
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
圖1:ADS微帶線計算工具
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
表1:ADS微帶線計算結(jié)果
 
2、射頻信號主路設(shè)計的微帶線長度的設(shè)計思路為使用不定長度傳輸微帶線多階梯阻抗變換器(圖2)。根據(jù)傳輸線理論:第i節(jié)的輸入阻抗公式為:
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
 
這樣就可以使用遞推法計算出每一節(jié)微帶線的長度。在此由于考慮整個校準(zhǔn)件是一個整體,以及還存在去除偏置電路的影響以及整個校準(zhǔn)件不宜做得太大的問題,因此對于每一節(jié)微帶線的長度,我們將使用ADS的S-parameter調(diào)諧仿真,以及Layout之后的Momentum仿真,從整體上對微帶線的長度和寬度進行調(diào)節(jié),以達(dá)到能實現(xiàn)設(shè)計目標(biāo)的要求。
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
圖2:階梯阻抗變換器
 
Part 2 直流偏置電路
 
直流偏置電路為射頻功率放大器主路的元器件提供一個工作狀態(tài),其設(shè)計的好壞將影響放大器的性能,尤其是漏極偏置電路的設(shè)計。一般直流偏置電路設(shè)計需要遵循的三個原則:
 
(1)偏置電路對信號主路影響要盡量的小,即不引入較明顯的附加耗損、反射以及高頻信號沿偏壓電路的泄露。
 
(2)為了偏置電路存在的大電流,需要考慮合理的偏置線寬度。
 
(3)盡量結(jié)構(gòu)緊湊,簡單。
 
基于直流偏置電路的三個原則,我們選擇四分之一扇形開路線(即四分之一波長開路短截線的變形),這樣能夠很好滿足三原則的要求。扇形微帶短截線電抗可以由下列關(guān)系式出[5]:
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
 
在公式(3) 中,Ji(x)和Ni(x)是第一類和第二類貝塞爾函數(shù),α扇形微帶短截線的角度,εre是等效介質(zhì)常數(shù),λ0為自由空間波長,r1和r2是扇形微帶線的內(nèi)、外半徑,hW分別是介質(zhì)基片的厚度和微帶寬度,We是扇形短截線等效為微帶線的寬度。
 
根據(jù)設(shè)計的三原則,偏置線寬度的設(shè)計,尤其是器件漏端的偏置線線寬的設(shè)計,需要我們考慮電流承載能力,同時也需要考慮的是直流偏置銅線必須為盡量細(xì)的高阻線,因為這樣能減少偏置電路對于主路的影響。那么根據(jù)表2中銅箔寬度與承載電流的關(guān)系,我們就可以進行選擇。在此設(shè)計中我們考慮電流承受能力在1.2A左右,所以使用0.762的線寬也將電流承載能力的余量考慮在我們的設(shè)計中。
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
表2:銅箔寬度與承載電流的關(guān)系
 
TRL校準(zhǔn)件的仿真與驗證
 
Part 1 校準(zhǔn)件的仿真
 
通過上述對于整個TRL校準(zhǔn)件的設(shè)計考慮,使用ADS工具,我們得到了本次根據(jù)仿真電路得出的可用于實際制作的PCB版圖,以及使用ADS的Momentum仿真出來的結(jié)果。
 
圖3中的S11和S21各有三條線段,分別代入Though、Reflect、Delay三塊校準(zhǔn)件的反射系數(shù)和傳輸系數(shù)??疾?.0GHz、2.25GHz和2.5GHz三個典型頻點的值,在S11的曲線圖上,除Delay在2.0GHz點上只達(dá)到了-11dB,其余均低于-15dB;同樣在S21的曲線圖上,除Delay在2.0GHz點上接近于-0.9dB,其余均高于-0.7dB。應(yīng)該說2.0GHz~2.5GHz這個頻段內(nèi)很好的達(dá)到了設(shè)計目標(biāo)。
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
圖3:TRL校準(zhǔn)件Momentum仿真圖
 
ADS這個軟件在仿真、優(yōu)化過程中有著優(yōu)異的性能,對于比較高要求和挑戰(zhàn)的性能指標(biāo)能夠做好預(yù)先仿真,并實現(xiàn)PCB版圖電路,減少了工程反復(fù)和硬件材料的浪費,降低了設(shè)計成本,是一個很好的射頻工程應(yīng)用工具。
 
Part 2 校準(zhǔn)件的驗證
 
校準(zhǔn)件的驗證分兩步進行,第一步是對校準(zhǔn)件直接進行小信號測試驗證,第二步是使用頻率在 2.0GHz~2.5GHz之間的器件,在配合Load-Pull系統(tǒng)找到器件封裝根部阻抗后,再通過普通射頻電路測試板的匹配來驗證校準(zhǔn)件是否符合設(shè)計要求。
 
1、校準(zhǔn)件小信號參數(shù)的驗證
 
在完成TRL校準(zhǔn)件的加工之后,我們將TRL校準(zhǔn)件中的Though校準(zhǔn)件和Delay校準(zhǔn)件在Agilent的N5241A網(wǎng)絡(luò)分析儀上進行小信號參數(shù)的測試,采用其結(jié)果與仿真結(jié)果進行對比。圖4中上面的圖為“Though校準(zhǔn)件”的S11和S21的頻率掃描圖,下面的圖為“Delay校準(zhǔn)件”的S11和S21的頻率掃描圖。從結(jié)果來看,“Though校準(zhǔn)件”和“Delay校準(zhǔn)件”的S11最大值均低于-12dB,S21的最大值均高-0.84dB。其測量結(jié)果與仿真結(jié)果基本一致,從測試值來講還略優(yōu)于仿真的結(jié)果。
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
圖4:TRL校準(zhǔn)件S參數(shù)實測
 
2、器件的校驗
 
在此我們選取了一顆工作頻率在2.45GHz,功率30W的RF-LDMOS,并已在封裝內(nèi)完成輸入兩級匹配的器件來進行驗證。通過與Focus的Load-pull的校準(zhǔn)和測量,我們得到的封裝器件的根部阻抗為:
 
輸入端:11.669 - 59.755j;
 
輸出端:5.941 + 22.597j
 
使用測量得到的器件根部的阻抗值,我們對符合器件的射頻電路測試板進行了匹配,見圖5。測試板的小信號測試曲線見圖6。對比使用TRL校準(zhǔn)件得到的器件性能與射頻外圍電路測試板得到的器件性能,可以得出表3。
 
表3的數(shù)據(jù)顯示了使用TRL校準(zhǔn)件測得的是器件根部阻抗以及在此阻抗下得到的器件性能。與根據(jù)根部阻抗進行的射頻電路測試板匹配后的器件性能比較,其增益、功率和效率基本一致。
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
圖5:24030器件射頻測試電路
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
圖6:TRL校準(zhǔn)件小信號測試曲線
 
射頻大功率器件TRL校準(zhǔn)件的設(shè)計與制作
表3:TRL校準(zhǔn)件得到的24030器件根部阻抗以及性能測試對比
 
結(jié)語
 
上文關(guān)于TRL校準(zhǔn)件的設(shè)計和制作很好地完成了既定的目標(biāo),實現(xiàn)了高頻下射頻大功率器件的TRL校準(zhǔn),同時我們也看到,TRL校準(zhǔn)件的設(shè)計涉及的很多方面和細(xì)節(jié)需要很好的梳理和把握。當(dāng)然,一個好的TRL校準(zhǔn)件的設(shè)計和制作還需要考慮更多的封裝的兼容以及更寬頻率的覆蓋,這個也是我們將要努力的方向。
 
本文轉(zhuǎn)載自:射頻百花譚
作者:李樹琪 蘇州遠(yuǎn)創(chuàng)達(dá)
 
 
推薦閱讀:
 
高性能數(shù)據(jù)采集系統(tǒng)增強數(shù)字X射線和MRI的圖像
如何設(shè)計并調(diào)試鎖相環(huán)電路
滿足你的嚴(yán)苛需求,這款PLL性能Max!
安森美獲Ethisphere 2020年商業(yè)道德領(lǐng)導(dǎo)力聯(lián)盟社區(qū)冠軍獎
醫(yī)療健康領(lǐng)域的可穿戴技術(shù)趨勢
要采購射頻么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉