阻抗匹配與史密斯圓圖,這是我見過最詳盡的版本
發(fā)布時(shí)間:2019-05-05 責(zé)任編輯:wenwei
【導(dǎo)讀】本文利用史密斯圓圖作為RF阻抗匹配的設(shè)計(jì)指南。文中給出了反射系數(shù)、阻抗和導(dǎo)納的作圖范例,并給出了 MAX2472工作在900MHz時(shí)匹配網(wǎng)絡(luò)的作圖范例。
事實(shí)證明,史密斯圓圖仍然是確定傳輸線阻抗的基本工具。
在處理RF系統(tǒng)的實(shí)際應(yīng)用問題時(shí),總會(huì)遇到一些非常困難的工作,對各部分級(jí)聯(lián)電路的不同阻抗進(jìn)行匹配就是其中之一。一般情況下,需要進(jìn)行匹配的電路包括天線與低噪聲放大器(LNA)之間的匹配、功率放大器輸出(RFOUT)與天線之間的匹配、LNA/VCO輸出與混頻器輸入之間的匹配。匹配的目的是為了保證信號(hào)或能量有效地從“信號(hào)源”傳送到“負(fù)載”。
在高頻端,寄生元件(比如連線上的電感、板層之間的電容和導(dǎo)體的電阻)對匹配網(wǎng)絡(luò)具有明顯的、不可預(yù)知的影響。頻率在數(shù)十兆赫茲以上時(shí),理論計(jì)算和仿真已經(jīng)遠(yuǎn)遠(yuǎn)不能滿足要求,為了得到適當(dāng)?shù)淖罱K結(jié)果,還必須考慮在實(shí)驗(yàn)室中進(jìn)行的RF測試、并進(jìn)行適當(dāng)調(diào)諧。需要用計(jì)算值確定電路的結(jié)構(gòu)類型和相應(yīng)的目標(biāo)元件值。
有很多種阻抗匹配的方法,包括
● 計(jì)算機(jī)仿真: 由于這類軟件是為不同功能設(shè)計(jì)的而不只是用于阻抗匹配,所以使用起來比較復(fù)雜。設(shè)計(jì)者必須熟悉用正確的格式輸入眾多的數(shù)據(jù)。設(shè)計(jì)人員還需要具有從大量的輸出結(jié)果中找到有用數(shù)據(jù)的技能。另外,除非計(jì)算機(jī)是專門為這個(gè)用途制造的,否則電路仿真軟件不可能預(yù)裝在計(jì)算機(jī)上。
● 手工計(jì)算: 這是一種極其繁瑣的方法,因?yàn)樾枰玫捷^長(“幾公里”)的計(jì)算公式、并且被處理的數(shù)據(jù)多為復(fù)數(shù)。
● 經(jīng)驗(yàn): 只有在RF領(lǐng)域工作過多年的人才能使用這種方法??傊?,它只適合于資深的專家。
● 史密斯圓圖:本文要重點(diǎn)討論的內(nèi)容。
本文的主要目的是復(fù)習(xí)史密斯圓圖的結(jié)構(gòu)和背景知識(shí),并且總結(jié)它在實(shí)際中的應(yīng)用方法。討論的主題包括參數(shù)的實(shí)際范例,比如找出匹配網(wǎng)絡(luò)元件的數(shù)值。當(dāng)然,史密斯圓圖不僅能夠?yàn)槲覀冋页鲎畲蠊β蕚鬏數(shù)钠ヅ渚W(wǎng)絡(luò),還能幫助設(shè)計(jì)者優(yōu)化噪聲系數(shù),確定品質(zhì)因數(shù)的影響以及進(jìn)行穩(wěn)定性分析。
圖1. 阻抗和史密斯圓圖基礎(chǔ)
基礎(chǔ)知識(shí)
在介紹史密斯圓圖的使用之前,最好回顧一下RF環(huán)境下(大于100MHz) IC連線的電磁波傳播現(xiàn)象。這對RS-485傳輸線、PA和天線之間的連接、LNA和下變頻器/混頻器之間的連接等應(yīng)用都是有效的。
大家都知道,要使信號(hào)源傳送到負(fù)載的功率最大,信號(hào)源阻抗必須等于負(fù)載的共軛阻抗,即:
RS + jXS = RL - jXL
圖2. 表達(dá)式RS + jXS = RL - jXL的等效圖
在這個(gè)條件下,從信號(hào)源到負(fù)載傳輸?shù)哪芰孔畲?。另外,為有效傳輸功率,滿足這個(gè)條件可以避免能量從負(fù)載反射到信號(hào)源,尤其是在諸如視頻傳輸、RF或微波網(wǎng)絡(luò)的高頻應(yīng)用環(huán)境更是如此。
史密斯圓圖
史密斯圓圖是由很多圓周交織在一起的一個(gè)圖。正確的使用它,可以在不作任何計(jì)算的前提下得到一個(gè)表面上看非常復(fù)雜的系統(tǒng)的匹配阻抗,唯一需要作的就是沿著圓周線讀取并跟蹤數(shù)據(jù)。
史密斯圓圖是反射系數(shù)(伽馬,以符號(hào)Γ表示)的極座標(biāo)圖。反射系數(shù)也可以從數(shù)學(xué)上定義為單端口散射參數(shù),即s11。
史密斯圓圖是通過驗(yàn)證阻抗匹配的負(fù)載產(chǎn)生的。這里我們不直接考慮阻抗,而是用反射系數(shù)ΓL,反射系數(shù)可以反映負(fù)載的特性(如導(dǎo)納、增益、跨導(dǎo)),在處理RF頻率的問題時(shí)ΓL更加有用。
我們知道反射系數(shù)定義為反射波電壓與入射波電壓之比:
圖3. 負(fù)載阻抗
負(fù)載反射信號(hào)的強(qiáng)度取決于信號(hào)源阻抗與負(fù)載阻抗的失配程度。反射系數(shù)的表達(dá)式定義為:
由于阻抗是復(fù)數(shù),反射系數(shù)也是復(fù)數(shù)。
為了減少未知參數(shù)的數(shù)量,可以固化一個(gè)經(jīng)常出現(xiàn)并且在應(yīng)用中經(jīng)常使用的參數(shù)。這里Z0 (特性阻抗)通常為常數(shù)并且是實(shí)數(shù),是常用的歸一化標(biāo)準(zhǔn)值,如50Ω、75Ω、100Ω和600Ω。于是我們可以定義歸一化的負(fù)載阻抗:
據(jù)此,將反射系數(shù)的公式重新寫為:
從上式我們可以看到負(fù)載阻抗與其反射系數(shù)間的直接關(guān)系。但是這個(gè)關(guān)系式是一個(gè)復(fù)數(shù),所以并不實(shí)用。我們可以把史密斯圓圖當(dāng)作上述方程的圖形表示。
為了建立圓圖,方程必需重新整理以符合標(biāo)準(zhǔn)幾何圖形的形式(如圓或射線)。
首先,由方程2.3求解出;
并且
令等式2.5的實(shí)部和虛部相等,得到兩個(gè)獨(dú)立的關(guān)系式:
重新整理等式2.6,經(jīng)過等式2.8至2.13得到最終的方程2.14。這個(gè)方程是在復(fù)平面(Γr, Γi)上、圓的參數(shù)方程(x - a)² + (y - b)² = R²,它以[r/(r + 1), 0]為圓心,半徑為1/(1 + r)。
更多細(xì)節(jié)參見圖4a
圖4a. 圓周上的點(diǎn)表示具有相同實(shí)部的阻抗
例如,r = 1的圓,以(0.5, 0)為圓心,半徑為0.5。它包含了代表反射零點(diǎn)的原點(diǎn)(0, 0) (負(fù)載與特性阻抗相匹配)。以(0, 0)為圓心、半徑為1的圓代表負(fù)載短路。負(fù)載開路時(shí),圓退化為一個(gè)點(diǎn)(以1, 0為圓心,半徑為零)。與此對應(yīng)的是最大的反射系數(shù)1,即所有的入射波都被反射回來。
在作史密斯圓圖時(shí),有一些需要注意的問題。下面是最重要的幾個(gè)方面:
● 所有的圓周只有一個(gè)相同的,唯一的交點(diǎn)(1, 0)。
● 代表0Ω、也就是沒有電阻(r = 0)的圓是最大的圓。
● 無限大的電阻對應(yīng)的圓退化為一個(gè)點(diǎn)(1, 0)
● 實(shí)際中沒有負(fù)的電阻,如果出現(xiàn)負(fù)阻值,有可能產(chǎn)生振蕩。
● 選擇一個(gè)對應(yīng)于新電阻值的圓周就等于選擇了一個(gè)新的電阻。
作圖
經(jīng)過等式2.15至2.18的變換,2.7式可以推導(dǎo)出另一個(gè)參數(shù)方程,方程2.19。
同樣,2.19也是在復(fù)平面(Γr, Γi)上的圓的參數(shù)方程(x - a)² + (y - b)² = R²,它的圓心為(1, 1/x),半徑1/x。
更多細(xì)節(jié)參見圖4b
圖4b. 圓周上的點(diǎn)表示具有相同虛部x的阻抗
例如,× = 1的圓以(1, 1)為圓心,半徑為1。所有的圓(x為常數(shù))都包括點(diǎn)(1, 0)。與實(shí)部圓周不同的是,x既可以是正數(shù)也可以是負(fù)數(shù)。來源于濾波器公眾平臺(tái)提醒 這說明復(fù)平面下半部是其上半部的鏡像。所有圓的圓心都在一條經(jīng)過橫軸上1點(diǎn)的垂直線上。
完成圓圖
為了完成史密斯圓圖,我們將兩簇圓周放在一起。可以發(fā)現(xiàn)一簇圓周的所有圓會(huì)與另一簇圓周的所有圓相交。若已知阻抗為r + jx,只需要找到對應(yīng)于r和x的兩個(gè)圓周的交點(diǎn)就可以得到相應(yīng)的反射系數(shù)。
可互換性
上述過程是可逆的,如果已知反射系數(shù),可以找到兩個(gè)圓周的交點(diǎn)從而讀取相應(yīng)的r和×的值。過程如下:
● 確定阻抗在史密斯圓圖上的對應(yīng)點(diǎn)
● 找到與此阻抗對應(yīng)的反射系數(shù)(Γ)
● 已知特性阻抗和Γ,找出阻抗
● 將阻抗轉(zhuǎn)換為導(dǎo)納
● 找出等效的阻抗
● 找出與反射系數(shù)對應(yīng)的元件值(尤其是匹配網(wǎng)絡(luò)的元件,見圖7)
推論
因?yàn)槭访芩箞A圖是一種基于圖形的解法,所得結(jié)果的精確度直接依賴于圖形的精度。下面是一個(gè)用史密斯圓圖表示的RF應(yīng)用實(shí)例:
例: 已知特性阻抗為50Ω,負(fù)載阻抗如下:
對上面的值進(jìn)行歸一化并標(biāo)示在圓圖中(見圖5):
圖5. 史密斯圓圖上的點(diǎn)
現(xiàn)在可以通過圖5的圓圖直接解出反射系數(shù)Γ。畫出阻抗點(diǎn)(等阻抗圓和等電抗圓的交點(diǎn)),只要讀出它們在直角坐標(biāo)水平軸和垂直軸上的投影,就得到了反射系數(shù)的實(shí)部Γr和虛部Γi (見圖6)。
該范例中可能存在八種情況,在圖6所示史密斯圓圖上可以直接得到對應(yīng)的反射系數(shù)Γ:
圖6. 從X-Y軸直接讀出反射系數(shù)Γ的實(shí)部和虛部
用導(dǎo)納表示
史密斯圓圖是用阻抗(電阻和電抗)建立的。一旦作出了史密斯圓圖,就可以用它分析串聯(lián)和并聯(lián)情況下的參數(shù)。這篇文是轉(zhuǎn)自濾波器公眾平臺(tái),它提醒說可以添加新的串聯(lián)元件,確定新增元件的影響只需沿著圓周移動(dòng)到它們相應(yīng)的數(shù)值即可。然而,增加并聯(lián)元件時(shí)分析過程就不是這么簡單了,需要考慮其它的參數(shù)。通常,利用導(dǎo)納更容易處理并聯(lián)元件。
我們知道,根據(jù)定義Y = 1/Z,Z = 1/Y。導(dǎo)納的單位是姆歐或者Ω-1 (現(xiàn)在導(dǎo)納的單位是西門子或S)。并且,如果Z是復(fù)數(shù),則Y也一定是復(fù)數(shù)。
所以Y = G + jB (2.20),其中G叫作元件的“電導(dǎo)”,B稱“電納”。在演算的時(shí)候應(yīng)該小心謹(jǐn)慎,按照似乎合乎邏輯的假設(shè),可以得出:G = 1/R及B = 1/X,然而實(shí)際情況并非如此,這樣計(jì)算會(huì)導(dǎo)致結(jié)果錯(cuò)誤。
用導(dǎo)納表示時(shí),第一件要做的事是歸一化, y = Y/Y0,得出y = g + jb。但是如何計(jì)算反射系數(shù)呢?通過下面的式子進(jìn)行推導(dǎo):
結(jié)果是G的表達(dá)式符號(hào)與z相反,并有Γ(y) = -Γ(z)。
如果知道z,就能通過將Γ的符號(hào)取反找到一個(gè)與(0, 0)的距離相等但在反方向的點(diǎn)。圍繞原點(diǎn)旋轉(zhuǎn)180°可以得到同樣的結(jié)果(見圖7)。
圖7. 180°度旋轉(zhuǎn)后的結(jié)果
當(dāng)然,表面上看新的點(diǎn)好像是一個(gè)不同的阻抗,實(shí)際上Z和1/Y表示的是同一個(gè)元件(這個(gè)新值在圓圖上呈現(xiàn)為一個(gè)不同的點(diǎn),而且反射系數(shù)也不相同,依次類推)。這篇文是轉(zhuǎn)自濾波器公眾平臺(tái),它提醒說出現(xiàn)這種情況的原因是我們的圖形本身是一個(gè)阻抗圖,而新的點(diǎn)代表的是一個(gè)導(dǎo)納。因此在圓圖上讀出的數(shù)值單位是西門子。
盡管用這種方法就可以進(jìn)行轉(zhuǎn)換,但是在解決很多并聯(lián)元件電路的問題時(shí)仍不適用。
導(dǎo)納圓圖
在前面的討論中,我們看到阻抗圓圖上的每一個(gè)點(diǎn)都可以通過以Γ復(fù)平面原點(diǎn)為中心旋轉(zhuǎn)180°后得到與之對應(yīng)的導(dǎo)納點(diǎn)。于是,將整個(gè)阻抗圓圖旋轉(zhuǎn)180°就得到了導(dǎo)納圓圖。這篇文是轉(zhuǎn)自濾波器公眾平臺(tái),它提醒說這種方法十分方便,它使我們不用建立一個(gè)新圖。所有圓周的交點(diǎn)(等電導(dǎo)圓和等電納圓)自然出現(xiàn)在點(diǎn)(-1, 0)。使用導(dǎo)納圓圖,使得添加并聯(lián)元件變得很容易。在數(shù)學(xué)上,導(dǎo)納圓圖由下面的公式構(gòu)造:
解這個(gè)方程:
接下來,令方程3.3的實(shí)部和虛部相等,我們得到兩個(gè)新的獨(dú)立的關(guān)系:
從等式3.4,我們可以推導(dǎo)出下面的式子:
它也是復(fù)平面(Γr, Γi)上圓的參數(shù)方程(x - a)² + (y - b)² = R² (方程3.12),以[-g/(g + 1), 0]為圓心,半徑為1/(1 + g)。
從等式3.5,我們可以推導(dǎo)出下面的式子:
同樣得到(x - a)² + (y - b)² = R²型的參數(shù)方程(方程3.17)。
求解等效阻抗
當(dāng)解決同時(shí)存在串聯(lián)和并聯(lián)元件的混合電路時(shí),可以使用同一個(gè)史密斯圓圖,在需要進(jìn)行從z到y(tǒng)或從y到z的轉(zhuǎn)換時(shí)將圖形旋轉(zhuǎn)。
考慮圖8所示網(wǎng)絡(luò)(其中的元件以Z0 = 50Ω進(jìn)行了歸一化)。串聯(lián)電抗(x)對電感元件而言為正數(shù),對電容元件而言為負(fù)數(shù)。而電納(b)對電容元件而言為正數(shù),對電感元件而言為負(fù)數(shù)。
圖8. 一個(gè)多元件電路
這個(gè)電路需要進(jìn)行簡化(見圖9)。從最右邊開始,有一個(gè)電阻和一個(gè)電感,數(shù)值都是1,我們可以在r = 1的圓周和I=1的圓周的交點(diǎn)處得到一個(gè)串聯(lián)等效點(diǎn),即點(diǎn)A。下一個(gè)元件是并聯(lián)元件,我們轉(zhuǎn)到導(dǎo)納圓圖(將整個(gè)平面旋轉(zhuǎn)180°),此時(shí)需要將前面的那個(gè)點(diǎn)變成導(dǎo)納,記為A''''。現(xiàn)在我們將平面旋轉(zhuǎn)180°,于是我們在導(dǎo)納模式下加入并聯(lián)元件,沿著電導(dǎo)圓逆時(shí)針方向(負(fù)值)移動(dòng)距離0.3,得到點(diǎn)B。然后又是一個(gè)串聯(lián)元件?,F(xiàn)在我們再回到阻抗圓圖。
圖9. 將圖8網(wǎng)絡(luò)中的元件拆開進(jìn)行分析
在返回阻抗圓圖之前,還必需把剛才的點(diǎn)轉(zhuǎn)換成阻抗(此前是導(dǎo)納),變換之后得到的點(diǎn)記為B'''',這篇文是轉(zhuǎn)自濾波器公眾平臺(tái) 用上述方法,將圓圖旋轉(zhuǎn)180°回到阻抗模式。沿著電阻圓周移動(dòng)距離1.4得到點(diǎn)C就增加了一個(gè)串聯(lián)元件,注意是逆時(shí)針移動(dòng)(負(fù)值)。進(jìn)行同樣的操作可增加下一個(gè)元件(進(jìn)行平面旋轉(zhuǎn)變換到導(dǎo)納),沿著等電導(dǎo)圓順時(shí)針方向(因?yàn)槭钦?移動(dòng)指定的距離(1.1)——這個(gè)點(diǎn)記為D。最后,我們回到阻抗模式增加最后一個(gè)元件(串聯(lián)電感)。于是我們得到所需的值,z,位于0.2電阻圓和0.5電抗圓的交點(diǎn)。至此,得出z = 0.2 + j0.5 。如果系統(tǒng)的特性阻抗是50Ω,有Z = 10 + j25Ω (見圖10)。
圖10. 在史密斯圓圖上畫出的網(wǎng)絡(luò)元件
逐步進(jìn)行阻抗匹配
史密斯圓圖的另一個(gè)用處是進(jìn)行阻抗匹配。這和找出一個(gè)已知網(wǎng)絡(luò)的等效阻抗是相反的過程。此時(shí),兩端(通常是信號(hào)源和負(fù)載)阻抗是固定的;如圖11所示。我們的目標(biāo)是在兩者之間插入一個(gè)設(shè)計(jì)好的網(wǎng)絡(luò)已達(dá)到合適的阻抗匹配。
圖11. 阻抗已知而元件未知的典型電路
初看起來好像并不比找到等效阻抗復(fù)雜。但是問題在于有無限種元件的組合都可以使匹配網(wǎng)絡(luò)具有類似的效果,濾波器公眾平臺(tái)提醒還需考慮其它因素(比如濾波器的結(jié)構(gòu)類型、品質(zhì)因數(shù)和有限的可選元件)。
實(shí)現(xiàn)這一目標(biāo)的方法是在史密斯圓圖上不斷增加串聯(lián)和并聯(lián)元件、直到得到我們想要的阻抗。來源于濾波器公眾平臺(tái)提醒 從圖形上看,就是找到一條途徑來連接史密斯圓圖上的點(diǎn);同樣,說明這種方法的最好辦法是給出一個(gè)實(shí)例。
我們的目標(biāo)是在60MHz工作頻率下匹配源阻抗(ZS)和負(fù)載阻抗(zL) (見圖11)。網(wǎng)絡(luò)結(jié)構(gòu)已經(jīng)確定為低通,L型(也可以把問題看作是如何使負(fù)載轉(zhuǎn)變成數(shù)值等于ZS的阻抗,即ZS復(fù)共軛)。下面是解的過程:
圖12. 圖11的網(wǎng)絡(luò),將其對應(yīng)的點(diǎn)畫在史密斯圓圖上
要做的第一件事是將各阻抗值歸一化。如果沒有給出特性阻抗,選擇一個(gè)與負(fù)載/信號(hào)源的數(shù)值在同一量級(jí)的阻抗值。假設(shè)Z0為50Ω。于是
zS = 0.5 - j0.3, z*S = 0.5 + j0.3, ZL = 2 - j0.5。
下一步,在圖上標(biāo)出這兩個(gè)點(diǎn),A代表zL,D代表z*S
然后判別與負(fù)載連接的第一個(gè)元件(并聯(lián)電容),先把zL轉(zhuǎn)化為導(dǎo)納,得到點(diǎn)A''''。
確定連接電容C后下一個(gè)點(diǎn)出現(xiàn)在圓弧上的位置。由于不知道C的值,所以我們不知道具體的位置,然而我們確實(shí)知道移動(dòng)的方向。來源于濾波器公眾平臺(tái)提醒 并聯(lián)的電容應(yīng)該在導(dǎo)納圓圖上沿順時(shí)針方向移動(dòng)、直到找到對應(yīng)的數(shù)值,得到點(diǎn)B (導(dǎo)納)。下一個(gè)元件是串聯(lián)元件,所以必需把B轉(zhuǎn)換到阻抗平面上去,得到B''''。B''''必需和D位于同一個(gè)電阻圓上。從圖形上看,從A''''到D只有一條路徑,但是如果要經(jīng)過中間的B點(diǎn)(也就是B''''),就需要經(jīng)過多次的嘗試和檢驗(yàn)。在找到點(diǎn)B和B''''后,我們就能夠測量A''''到B和B''''到D的弧長,前者就是C的歸一化電納值,后者為L的歸一化電抗值。
A''''到B的弧長為b = 0.78,則B = 0.78 × Y0 = 0.0156S。
因?yàn)?omega;C = B,所以C = B/ω = B/(2πf) = 0.0156/[2π(60 × 106)] = 41.4pF。
B''''到D的弧長為× = 1.2,于是X = 1.2 × Z0 = 60Ω。 由ωL = X,得L = X/ω = X/(2πf)= 60/[2π(60 × 106)] = 159nH。
圖13. MAX2472典型工作電路
第二個(gè)例子是MAX2472的輸出匹配電路,匹配于50Ω負(fù)載阻抗(zL),工作頻率為900MHz (圖14所示)。該網(wǎng)絡(luò)采用與MAX2472數(shù)據(jù)資料相同的配置結(jié)構(gòu),上圖給出了匹配網(wǎng)絡(luò),來源于濾波器公眾平臺(tái)提醒 包括一個(gè)并聯(lián)電感和串聯(lián)電容,以下給出了匹配網(wǎng)絡(luò)元件值的查找過程。
圖14. 圖13所示網(wǎng)絡(luò)在史密斯圓a圖上的相應(yīng)工作點(diǎn)
首先將S22散射參數(shù)轉(zhuǎn)換成等效的歸一化源阻抗。MAX2472的Z0為50Ω,S22 = 0.81/-29.4°轉(zhuǎn)換成zS = 1.4 - j3.2, zL = 1和zL* = 1。
下一步,在圓圖上定位兩個(gè)點(diǎn),zS標(biāo)記為A,zL*標(biāo)記為D。因?yàn)榕c信號(hào)源連接的是第一個(gè)元件是并聯(lián)電感,將源阻抗轉(zhuǎn)換成導(dǎo)納,得到點(diǎn)A’。
確定連接電感LMATCH后下一個(gè)點(diǎn)所在的圓弧,由于不知道LMATCH的數(shù)值,因此不能確定圓弧終止的位置。但是,我們了解連接LMATCH并將其轉(zhuǎn)換成阻抗后,源阻抗應(yīng)該位于r = 1的圓周上。由此,串聯(lián)電容后得到的阻抗應(yīng)該為z = 1 + j0。以原點(diǎn)為中心,在r = 1的圓上旋轉(zhuǎn)180°,反射系數(shù)圓和等電納圓的交點(diǎn)結(jié)合A’點(diǎn)可以得到B (導(dǎo)納)。B點(diǎn)對應(yīng)的阻抗為B’點(diǎn)。
找到B和B''''后,可以測量圓弧A''''B以及圓弧B''''D的長度,第一個(gè)測量值可以得到LMATCH。電納的歸一化值,第二個(gè)測量值得到CMATCH電抗的歸一化值。
圓弧A''''B的測量值為b = -0.575,B = -0.575 × Y0 = 0.0115S。因?yàn)?/ωL = B,則LMATCH = 1/Bω = 1/(B2πf) = 1/(0.01156 × 2 × π × 900 × 106) = 15.38nH,近似為15nH。
圓弧B''''D的測量值為× = -2.81,X = -2.81 × Z0 = -140.5Ω。因?yàn)?1/ωC = X,則CMATCH = -1/Xω = -1/(X2πf) = -1/(-140.5 × 2 × π × 900 × 106) = 1.259pF,近似為1pF。
這些計(jì)算值沒有考慮寄生電感和寄生電容,所得到的數(shù)值接近與數(shù)據(jù)資料中給出的數(shù)值: LMATCH = 12nH和CMATCH = 1pF。
總結(jié)
在擁有功能強(qiáng)大的軟件和高速、高性能計(jì)算機(jī)的今天:人們會(huì)懷疑在解決電路基本問題的時(shí)候是否還需要這樣一種基礎(chǔ)和初級(jí)的方法。
實(shí)際上,一個(gè)真正的工程師不僅應(yīng)該擁有理論知識(shí),更應(yīng)該具有利用各種資源解決問題的能力!在程序中加入幾個(gè)數(shù)字然后得出結(jié)果的確是件容易的事情,當(dāng)問題的解十分復(fù)雜、并且不唯一時(shí),讓計(jì)算機(jī)作這樣的工作尤其方便。然而,如果能夠理解計(jì)算機(jī)的工作平臺(tái)所使用的基本理論和原理,知道它們的由來,這樣的工程師或設(shè)計(jì)者就能夠成為更加全面和值得信賴的專家,得到的結(jié)果也更加可靠。
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號(hào)和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識(shí)別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開”超級(jí)電容的“外衣”,看看超級(jí)電容“超級(jí)”在哪兒
- DigiKey 誠邀各位參會(huì)者蒞臨SPS 2024?展會(huì)參觀交流,體驗(yàn)最新自動(dòng)化產(chǎn)品
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
音頻IC
音頻SoC
音頻變壓器
引線電感
語音控制
元件符號(hào)
元器件選型
云電視
云計(jì)算
云母電容
真空三極管
振蕩器
振蕩線圈
振動(dòng)器
振動(dòng)設(shè)備
震動(dòng)馬達(dá)
整流變壓器
整流二極管
整流濾波
直流電機(jī)
智能抄表
智能電表
智能電網(wǎng)
智能家居
智能交通
智能手機(jī)
中電華星
中電器材
中功率管
中間繼電器