從傳統(tǒng)上講,射頻探針的接觸是用鈹(beryllium)-銅(BeCu)制作的。而且人們最早采用射頻探針技術(shù)與今天的工具是很不相同的,之后工程師在探針技術(shù)上取得了突破,才確定了射頻探針的基本要求和工作原理,
射頻(RF)探針在射頻產(chǎn)品生命周期中幾乎每一個(gè)階段都起著重要作用:從技術(shù)開(kāi)發(fā),模型參數(shù)提取,設(shè)計(jì)驗(yàn)證及調(diào)試一直到小規(guī)模生產(chǎn)測(cè)試和最終的生產(chǎn)測(cè)試。通過(guò)使用射頻探針,人們便有可能在晶片層次上測(cè)量射頻組件的真正特性。這可以將研究和開(kāi)發(fā)時(shí)間縮短并且大大降低開(kāi)發(fā)新產(chǎn)品的成本。
在僅僅三十年的時(shí)間里,射頻探針技術(shù)便取得了驚人的進(jìn)步,從低頻測(cè)量到適用多種應(yīng)用場(chǎng)合的商用方案:如在110GHz高頻和高溫環(huán)境進(jìn)行阻抗匹配,多端口,差分和混合信號(hào)的測(cè)量裝置,連續(xù)波模式中直到60W的高功率測(cè)量,以及直到750GHz的太赫茲應(yīng)用,都能見(jiàn)到射頻探針的身影。
人們最早采用射頻探針技術(shù)與今天的工具是很不相同的,早期探針使用了由一個(gè)很短的線極尖(wire TIp)而逐漸收斂的50-Ω微帶線,通過(guò)探針基片上一個(gè)小孔而與被測(cè)器件(DUT)的壓點(diǎn)(pad)相接觸。此時(shí),其技術(shù)難度在于如何突破4GHz時(shí)實(shí)現(xiàn)可重復(fù)測(cè)量。雖然有可能通過(guò)校準(zhǔn)過(guò)程來(lái)剔除一個(gè)接觸線極尖相對(duì)較大的串聯(lián)電感的影響,但當(dāng)圓晶片的夾具被移動(dòng)時(shí),線極尖的輻射阻抗會(huì)有較大的變化。高頻測(cè)量使用的極尖設(shè)計(jì)與用于直流和低頻測(cè)量的極尖不同,而且必須使50-Ω環(huán)境盡可能地接近于DUT壓點(diǎn)。
之后工程師在探針技術(shù)上取得了突破。確定了射頻探針的基本要求和工作原理:
1) 探針的50-Ω平面?zhèn)鬏斁€應(yīng)當(dāng)直接與DUT壓點(diǎn)相接觸而不用接觸導(dǎo)線。對(duì)于微帶線和隨后的共面探針設(shè)計(jì),探針的接觸是用小的金屬球來(lái)實(shí)現(xiàn)的,這個(gè)金屬球要足夠大以保證可靠且可重復(fù)性的接觸。
2) 為了能同時(shí)接觸到DUT的信號(hào)壓點(diǎn)和接地壓點(diǎn),需要將探針傾斜。這個(gè)過(guò)程被稱為“探針的平面化”。
3) 探針的接觸重復(fù)性比同軸連接器的可重復(fù)性要好得多。便于進(jìn)行探針極尖和在片標(biāo)準(zhǔn)及專用校準(zhǔn)方法的開(kāi)發(fā)。
4)具有很高重復(fù)性的接觸可以進(jìn)行探針的準(zhǔn)確校準(zhǔn)并將測(cè)量參考平面移向其極尖處。 來(lái)自探針線和到同軸連接器的過(guò)渡所產(chǎn)生的探針的損耗及反射是通過(guò)由射頻電纜和連接器的誤差相類似的方式而抵消的。
5) 由于其很小的幾何尺寸,人們可以假設(shè)平面標(biāo)準(zhǔn)件的等效模型純粹是集總式的。此外,人們可以從標(biāo)準(zhǔn)件的幾何尺寸來(lái)很容易地預(yù)測(cè)模型參數(shù)。
隨著探針的設(shè)計(jì)從微帶線變換到共面波導(dǎo)(CPW),探針的制造就變得很容易了(圖1)。 Tektronix公司最終將探針從“自己動(dòng)手”的工具轉(zhuǎn)換為逐漸形成的射頻半導(dǎo)體工業(yè)的一種真正的產(chǎn)品(圖2)。這預(yù)示著圓晶片層次射頻測(cè)量時(shí)代的開(kāi)始。
圖1 基于陶瓷共面線的晶片探針設(shè)計(jì)
圖2(a)共面探針的頂視圖和側(cè)視圖
(b)經(jīng)過(guò)修正的各種在片阻抗標(biāo)準(zhǔn)件的一端口測(cè)量
在80年代初,Tektronix公司推出了最早的射頻圓晶片探針模型TMP9600和藍(lán)寶石校準(zhǔn)基片CAL96(圖3)。探針的主要開(kāi)發(fā)者Eric Strid和Reed Gleason于1983年創(chuàng)辦了Cascade Microtech公司并推出了WPH探針。這兩個(gè)公司曾經(jīng)在若干年間提供著非常類似的射頻探針,一直到Tektronix公司于90年代初最終退出了圓晶片探針這個(gè)業(yè)務(wù)。在這樣的機(jī)會(huì)下,CascadeMicrotech憑借著與Hewlett Packard公司之間的良好關(guān)系,便成為工業(yè)界射頻探針最主要的供應(yīng)商。
圖3 (a)第一個(gè)商用的藍(lán)寶石校準(zhǔn)基片CAL96;
?。?/font>b)來(lái)自Tektronix公司的射頻圓晶探針TMP9600;
?。?/font>c)來(lái)自Cascade Microtech公司的WPH探針。
WPH探針的頻率在很短的時(shí)間內(nèi)就擴(kuò)大到26GHz,并且在1987年達(dá)到了50GHz,以滿足迅速開(kāi)發(fā)的單片微波集成電路(MMIC)的需要。V-波段和W-波段探針?lè)謩e于1991年和1993年出現(xiàn)。1988年,Cascade推出了用于規(guī)?;a(chǎn)應(yīng)用的26.5GHz系列極尖可替換的探針(RTP)。現(xiàn)在,人們無(wú)需從測(cè)試臺(tái)上將探針主體移動(dòng)便可以迅速更換陶瓷極尖。WPH探針對(duì)80年代和90年代微波技術(shù)開(kāi)發(fā)做出了貢獻(xiàn),但存在若干個(gè)技術(shù)上的局限。最關(guān)鍵的局限在于脆弱的陶瓷CPW線。即使施加高于建議值的一個(gè)最小的力(例如,為了達(dá)到更好的接觸)都會(huì)損壞探針。許多工程師將這個(gè)時(shí)刻稱為“死亡之聲”。陶瓷探針破裂的聲音通常還會(huì)將整個(gè)項(xiàng)目推向窮途末路,因?yàn)閷?duì)于大學(xué)和小的研究室來(lái)說(shuō)探針是非常昂貴的。雖然引入了RTP系列,但陶瓷探針還是被別的技術(shù)擠出了市場(chǎng)。
當(dāng)GGB工業(yè)公司為基于微同軸電纜的射頻探針申請(qǐng)專利時(shí),1988年便成為另一個(gè)里程碑。采用微同軸電纜作為中間過(guò)渡媒質(zhì)具有下列這些好處:
1) 機(jī)械方面的顯著改善延長(zhǎng)了探針的壽命。
2) 被損壞的探針可以通過(guò)一種相對(duì)較為容易且并不昂貴的方式而重新敲打出來(lái)。
3) 電器特性得到了改善。
4) 簡(jiǎn)化制造工藝。
5) 降低成本。
在1993年,GGB公司在IEEE理論和技術(shù)協(xié)會(huì)的國(guó)際微波年會(huì)上(IMS)介紹了W-波段探針。在1999年,它們的探針達(dá)到了220GHz,在2006年又進(jìn)一步擴(kuò)展到325GHz,在2012年又達(dá)到了500GHz。加上與供應(yīng)商的密切合作,如Karl Suss(后來(lái)的SUSS MicroTech),GGB工業(yè)公司成為全世界射頻市場(chǎng)上最有影響力的公司之一。
同時(shí)期,Cascade公司在1994年的第43屆春季ARFTG會(huì)議上展示了新型的40-GHz空氣-共面探針(ACP)(圖5)。幾年之內(nèi),ACP探針迅速達(dá)到了110GHz(1-mm連接器模型)和140GHz(基于波導(dǎo)模型),代替了WPH生產(chǎn)線。到目前為止,由于ACP的柔軟及無(wú)損式接觸,許多工程師喜歡將ACP用于探測(cè)金壓點(diǎn)。
圖4來(lái)自GGB 工業(yè)公司的Picoprobe 探針
圖5 Cascade Microtech 公司的ACP 探針
圖6∣Z∣-探針模型。
圖7 Cascade Microtech 公司的Infinity 探針
在2000年,Rosenberger公司強(qiáng)勢(shì)推出了一個(gè)用于PCB應(yīng)用、具有明顯超過(guò)傳統(tǒng)技術(shù)的射頻探針的新概念,將探針的幾何尺寸縮小到圓晶片層次所要求的水平,并于2001年推出了新的射頻圓晶探針∣Z∣-探針。∣Z∣-探針可以覆蓋40GHz范圍并且實(shí)現(xiàn)了若干種創(chuàng)新思想。
1) 這個(gè)探針沒(méi)有使用微同軸電纜。實(shí)現(xiàn)了從同軸連接到空氣絕緣共面接觸線的直接過(guò)渡。
2) 這個(gè)過(guò)渡是在探針體內(nèi)制作的,這便允許對(duì)過(guò)渡點(diǎn)進(jìn)行一個(gè)準(zhǔn)確的優(yōu)化,從而將可能的不連續(xù)性減到最小。
3) 共面接觸是采用一個(gè)紫外光刻和電鍍工藝(UV-LIGA)制作的,這個(gè)工藝與制作MEMS 產(chǎn)品的工藝類似。其極高的精度和可重復(fù)性可以形成CPW線和一個(gè)恒定的空氣氣隙非常準(zhǔn)確的形狀。
在90年代中期,硅被大量應(yīng)用于射頻領(lǐng)域。這給射頻探針的制作帶來(lái)一些挑戰(zhàn)。從傳統(tǒng)上講,射頻探針的接觸是用鈹(beryllium)-銅(BeCu)制作的。在探測(cè)硅器件和電路的鋁接觸壓點(diǎn)時(shí),這種材料就會(huì)變得很麻煩。BeCu極尖的迅速氧化和臟物的累積會(huì)導(dǎo)致對(duì)鋁接觸壓點(diǎn)的接觸重復(fù)性的極大降低。為了解決這個(gè)問(wèn)題,供應(yīng)商提供了帶有鎢(W)極尖的射頻探針。操作多用途測(cè)量裝置的測(cè)試工程師們?cè)诿看胃淖僁UT類型(硅或III-V族復(fù)合物半導(dǎo)體)時(shí),都被迫要更換探針,即使測(cè)試的頻率范圍保持不變。∣Z∣-探針也致力于解決這種不便之處。共面接觸是由鎳(Ni)來(lái)制作的,在與鋁和金的接觸壓點(diǎn)上均展示出最佳的接觸性能。隨后,其它射頻探針的供應(yīng)商也開(kāi)始提供用Ni或Ni合金來(lái)制作極尖的多用途探針。
隨著對(duì)MOS和BICMOS器件的射頻特性及縮小DUT接觸點(diǎn)尺寸不斷增長(zhǎng)的需求, CascadeMicrotech公司在2002年的第59屆春季自動(dòng)射頻技術(shù)組織(AutomaTIc RF Techniques Group-ARFTG)微波測(cè)量大會(huì)上介紹了基于薄膜技術(shù)的新的圓晶探針。這個(gè)方法是基于Cascade公司的Pyramid Probe Card 技術(shù)。在一個(gè)柔軟的聚酰亞胺薄膜基片上的微帶線從同軸線通過(guò)非氧化稀有金屬探針極尖向DUT傳輸信號(hào)。Ni探針極尖的接觸面積大約為12μm x12 μm,從而可以探測(cè)極小的接觸壓點(diǎn)。這個(gè)新型的Infinity 探針展示了卓越的接觸的一致性和探針-到-探針的很低的串?dāng)_。
Cascade公司提供了工作在110GHz一下不同規(guī)格的Infinity探針。用于220和325GHz 測(cè)量的基于波導(dǎo)的探針是分別于2005和2007年推出的。在Cascade于2009年后期開(kāi)始提供用于500GHz-波段的Infinity探針。
在2009-2011年間,兩個(gè)新成員進(jìn)入了成熟的探針市場(chǎng):帶有微機(jī)械加工的探針DMPI 瞄準(zhǔn)的是新興的亞太赫茲(sub-THz)市場(chǎng)。來(lái)自臺(tái)灣的Allstron公司為110GHz以下的應(yīng)用提供了并不昂貴的探針,其中,測(cè)試成本的降低是最主要的要求。來(lái)自于Allstron公司的探針是一種基于微同軸電纜的傳統(tǒng)設(shè)計(jì)。接觸結(jié)構(gòu)是空氣絕緣的CPW線。它類似于ACP,但是極尖被做成一定的形狀來(lái)探測(cè)具有很小鈍化窗口(passivaTIon windows)的鋁壓點(diǎn)。
圖8 Allstron 公司的射頻探針
現(xiàn)代對(duì)于射頻圓晶探針的設(shè)計(jì)將測(cè)試信號(hào)從一個(gè)三維媒質(zhì)(同軸電纜或矩形波導(dǎo))轉(zhuǎn)換到兩維(共面)探針的接觸上。這種操作需要對(duì)傳輸媒質(zhì)的特性阻抗Z0進(jìn)行仔細(xì)的處理,并且要在不同傳播模式之間進(jìn)行電磁能量的正確轉(zhuǎn)換。雖然晶片探針的輸入是一個(gè)標(biāo)準(zhǔn)化同軸或波導(dǎo)界面,但它的輸出(探針極尖)則可以實(shí)現(xiàn)不同的設(shè)計(jì)概念。這些界面,特別是探針極尖,會(huì)將不連續(xù)性帶入到測(cè)量信號(hào)路徑中。這種不連續(xù)性本身會(huì)產(chǎn)生高階傳播模。因此,圓晶探針和DUT激勵(lì)必須只能支持單個(gè)準(zhǔn)-TEM傳播模式并且要排除高階模或者對(duì)高階模展現(xiàn)出更高的阻抗。
EM場(chǎng)分布圖的轉(zhuǎn)換是由處于單個(gè)探針組裝內(nèi)的若干個(gè)射頻過(guò)渡措施來(lái)維持的。一個(gè)傳統(tǒng)的射頻探針是由下列幾個(gè)部分組成的:
1) 測(cè)試儀的界面(同軸或波導(dǎo))
2) 從測(cè)試界面到微同軸電纜的過(guò)渡
3) 從微同軸電纜到一個(gè)平面波導(dǎo)的過(guò)渡,如CPW或微帶線
4) 面向晶片上DUT的共面界面(或者極尖)
若干種探針或者將3)和4)組合在一起,或者不使用微同軸電纜(圖9)。一個(gè)同軸連接器是低于65GHz的射頻探針常用的測(cè)試系統(tǒng)界面。同軸和波導(dǎo)這兩種連接方案均是50 到110GHz頻率范圍內(nèi)可能的界面。在單次掃描中,覆蓋了從直流到110GHz的寬帶測(cè)試系統(tǒng)利用了最小尺寸(1mm)的同軸連接器。不同尺寸的矩形波導(dǎo)是與110GHz以上的測(cè)量系統(tǒng)對(duì)接的。
圖9 (a)基于一個(gè)微同軸電纜的射頻探針
(b)波導(dǎo)界面
?。?/font>c)從同軸到共面線的直接過(guò)渡
一個(gè)探針技術(shù)的自然壽命大約是12年。有兩個(gè)主要因素推動(dòng)著探針技術(shù)的發(fā)展:
1) 改善高端應(yīng)用中的測(cè)量精度
2) 降低主流應(yīng)用的測(cè)試成本。
除了主流(Allstron公司)和高端應(yīng)用(DMPI公司)的新的探針供應(yīng)商以外,一些射頻微波行業(yè)的中小型服務(wù)商也在提供用于低頻及寬頻領(lǐng)域的的產(chǎn)品。
提供的MP系列同軸探針,滿足DC-20GHz的測(cè)量需求,特性如下:
1.DC-20GHz 帶寬
2.超低的插入及回波損耗
3.GSG、GS 配置(0.8/1.5/2.5mm 間距范圍)
優(yōu)勢(shì):
1. 容易探測(cè)測(cè)試沒(méi)有任何焊接過(guò)的電路板信號(hào)
2. 兼容 pogo 大頭針允許探索non-planar 結(jié)構(gòu)
3. 探針的使用壽命更加長(zhǎng)久
4. 較少測(cè)試時(shí)間
應(yīng)用于:
1)射頻和微波模塊信號(hào)插入,檢測(cè)和測(cè)量輸出;
2)高頻電路板電氣性能分析;
3)高速數(shù)字電路分析
推薦閱讀:
一文讀懂DC/AC SCAN測(cè)試技術(shù)
智慧校園安全設(shè)備視頻監(jiān)控檢測(cè)系統(tǒng)方案
一款全自動(dòng)電飯煲系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
中國(guó)電動(dòng)汽車百人會(huì)理事長(zhǎng)陳清泰先生一行調(diào)研參觀英飛凌無(wú)錫智能制造工廠