引入48V混合動(dòng)力系統(tǒng)具有巨大的進(jìn)步空間。克服對(duì)修改長(zhǎng)期存在的12V輸電網(wǎng)絡(luò)(PDN)可能是最大的挑戰(zhàn)。電源變化通常需要廣泛測(cè)試新技術(shù),同時(shí)需要能夠滿足汽車行業(yè)高安全性和質(zhì)量標(biāo)準(zhǔn)的新供應(yīng)商。
但是,隨著數(shù)據(jù)中心行業(yè)轉(zhuǎn)向48V PDN,其優(yōu)勢(shì)遠(yuǎn)遠(yuǎn)超過了轉(zhuǎn)換成本。對(duì)于汽車行業(yè)而言,48V混合動(dòng)力系統(tǒng)提供了一種全新方法來(lái)快速引入排放量更低、續(xù)航里程更長(zhǎng)且油耗更低的新型汽車。它還提供了令人興奮的新設(shè)計(jì)選項(xiàng),以實(shí)現(xiàn)更高的性能和功能,同時(shí)仍減少二氧化碳排放量。
最大化PDN
添加48V電池為較重的動(dòng)力總成和底盤系統(tǒng)負(fù)載供電,為工程師提供了選擇。現(xiàn)在,可以選擇添加一些系統(tǒng),這些系統(tǒng)可以直接處理48V輸入,或者通過穩(wěn)壓DC / DC
轉(zhuǎn)換器將48V轉(zhuǎn)換為12V,從而保留傳統(tǒng)的12V機(jī)電負(fù)載(如泵,風(fēng)扇和電動(dòng)機(jī))。為了應(yīng)對(duì)變化和風(fēng)險(xiǎn),現(xiàn)有的輕度混合動(dòng)力輸電系統(tǒng)正在緩慢增加48V負(fù)載,但仍使用大型集中式高功率48V至12V轉(zhuǎn)換器,該轉(zhuǎn)換器負(fù)責(zé)饋入12V負(fù)載。但是,這種集中式架構(gòu)并沒有充分利用48V PDN的優(yōu)勢(shì),也沒有利用現(xiàn)有的高級(jí)轉(zhuǎn)換器拓?fù)?、控制系統(tǒng)和封裝的優(yōu)勢(shì)。
圖2:標(biāo)準(zhǔn)DC / DC轉(zhuǎn)換器(左)的效率為94%,Vicor DC / DC轉(zhuǎn)換器(右)的效率為98%。
這些集中式DC/DC轉(zhuǎn)換器絕大多數(shù)都是笨重的,因?yàn)樗鼈兪褂昧溯^舊的低頻脈沖寬度調(diào)制(PWM)開關(guān)拓?fù)?。?duì)于許多關(guān)鍵的動(dòng)力總成系統(tǒng),它們?nèi)菀装l(fā)生單點(diǎn)故障。
另一種體系結(jié)構(gòu)則是采用模塊化電源組件的分散式電源。這種電源傳輸架構(gòu)使用較小的,低功耗的48至12V轉(zhuǎn)換器,在接近12V負(fù)載的整個(gè)車輛的近負(fù)載點(diǎn)中分布。
根據(jù)電壓越高,電流越小,導(dǎo)線損失就越小可知,對(duì)于給定的功率水平,在48V時(shí)的電流是12V系統(tǒng)中電流的1/4,損耗(I2R)低16倍。在電流的1/4時(shí),電纜和連接器可以更小,更輕,更便宜。分散式電源架構(gòu)還具有顯著的熱管理和電源系統(tǒng)冗余優(yōu)勢(shì)(圖2)。這是在整個(gè)車輛中散布kW級(jí)功率的另一種方式,而不需傳統(tǒng)DC / DC轉(zhuǎn)換器的重量、散熱和體積。
可擴(kuò)展模塊
分散式電力輸送的模塊化方法(圖3)具有高度的可擴(kuò)展性。
圖3:混合動(dòng)力汽車的模塊化方法。
電池的48V輸出分配到車輛的各種高功率負(fù)載上,從而最大限度地發(fā)揮了較低電流(4x)和較低損耗(16x)的優(yōu)勢(shì),從而使PDN的體積更小,重量更輕。根據(jù)對(duì)各種分布式負(fù)載的功率分析,可以設(shè)計(jì)一個(gè)模塊并通過適當(dāng)?shù)墓β柿6闰?yàn)證,并可在并行陣列中使用,從而擴(kuò)展系統(tǒng)的功率等級(jí)。
在此示例中,顯示了一個(gè)2kW的模塊,粒度和可伸縮性取決于系統(tǒng)。通過使用分布式模塊代替大型集中式DC / DC轉(zhuǎn)換器,N + 1冗余也可以以更低的成本實(shí)現(xiàn)。如果負(fù)載功率在車輛開發(fā)階段發(fā)生改變,則該方法同樣更為方便。工程師無(wú)需添加或修改接地的定制電源,而是可以通過添加或刪除模塊進(jìn)行縮放。另一個(gè)設(shè)計(jì)優(yōu)勢(shì)是減少了開發(fā)時(shí)間,因?yàn)樵撃K已經(jīng)獲得批準(zhǔn)和認(rèn)證。
圖4顯示了全電動(dòng)汽車中的模塊化應(yīng)用領(lǐng)域。
圖4:全電動(dòng)汽車中分散式48V架構(gòu)的模塊化應(yīng)用。
對(duì)于純電動(dòng)汽車或高性能混合動(dòng)力汽車,由于動(dòng)力總成和底盤系統(tǒng)的高功率需求,因此使用了高壓電池。48V SELV PDN對(duì)于OEM仍然具有顯著優(yōu)勢(shì),但是現(xiàn)在,電源系統(tǒng)設(shè)計(jì)人員還面臨著大電壓800V或400V轉(zhuǎn)換至48V的挑戰(zhàn)。
這種高功率DC / DC轉(zhuǎn)換器也需要隔離但不需要調(diào)節(jié)。通過使用穩(wěn)壓PoL轉(zhuǎn)換器,高功率上游轉(zhuǎn)換器可以使用固定比率拓?fù)?。由于分別針對(duì)800/48和400/48的16:1或8:1寬的輸入至輸出電壓范圍,這非常有利。
在此范圍內(nèi)使用穩(wěn)壓轉(zhuǎn)換器效率非常低,并且存在很大的熱管理問題。OEM經(jīng)常在電池組內(nèi)部找到這種高效的降壓解決方案,并且在某些情況下希望能夠淘汰電池。Vicor的固定比例高壓轉(zhuǎn)換產(chǎn)品以快速的壓擺率提供快速的電流輸出,使汽車OEM可以減輕12至14kg不必要的48V電池。
由于在分配400V或800V時(shí)的安全要求,分離這種高壓隔離的轉(zhuǎn)換器將非常困難且成本很高。但是,可以使用電源模塊替代笨重的銀盒電源DC / DC轉(zhuǎn)換器來(lái)設(shè)計(jì)高功率集中式固定比率轉(zhuǎn)換器。
可以開發(fā)出粒度和可擴(kuò)展性級(jí)別合適的電源模塊,然后輕松地將其并聯(lián)用于具有不同動(dòng)力總成和底盤電氣化要求的一系列車輛。 Vicor固定比率總線轉(zhuǎn)換器(BCM)也是雙向的,支持各種能源再生方案。由于正弦振幅轉(zhuǎn)換器(SAC)的高頻,軟開關(guān)拓?fù)洌珺CM的效率超過98%。它們還具有2.6kW每平方英寸的功率密度,從而大大減小了集中式高壓轉(zhuǎn)換器的尺寸。
汽車電源系統(tǒng)的模塊化方法簡(jiǎn)化了復(fù)雜的電源交付挑戰(zhàn),提高了性能,生產(chǎn)效率和上市時(shí)間。
(來(lái)源:Vicor,作者:Patrick Wadden,Vicor汽車業(yè)務(wù)全球副總裁;Nicolas Richard,Vicor汽車業(yè)務(wù)總監(jiān))