你的位置:首頁 > 電源管理 > 正文

菜鳥選擇MOSFET的四步驟!

發(fā)布時間:2019-09-09 責(zé)任編輯:wenwei

【導(dǎo)讀】本文概括了一些MOSFET的關(guān)鍵指標(biāo),這些指標(biāo)在數(shù)據(jù)表上是如何表述的,以及你理解這些指標(biāo)所要用到的清晰圖片。像大多數(shù)電子器件一樣,MOSFET也受到工作溫度的影響。所以很重要的一點(diǎn)是了解測試條件,所提到的指標(biāo)是在這些條件下應(yīng)用的。還有很關(guān)鍵的一點(diǎn)是弄明白你在“產(chǎn)品簡介”里看到的這些指標(biāo)是“最大”或是“典型”值,因?yàn)橛行?shù)據(jù)表并沒有說清楚。
 
一位工程師曾經(jīng)對我講,他從來不看MOSFET數(shù)據(jù)表的第一頁,因?yàn)?ldquo;實(shí)用”的信息只在第二頁以后才出現(xiàn)。事實(shí)上,MOSFET數(shù)據(jù)表上的每一頁都包含有對設(shè)計者非常有價值的信息。但人們不是總能搞得清楚該如何解讀制造商提供的數(shù)據(jù)。本文概括了一些MOSFET的關(guān)鍵指標(biāo),這些指標(biāo)在數(shù)據(jù)表上是如何表述的,以及你理解這些指標(biāo)所要用到的清晰圖片。像大多數(shù)電子器件一樣,MOSFET也受到工作溫度的影響。所以很重要的一點(diǎn)是了解測試條件,所提到的指標(biāo)是在這些條件下應(yīng)用的。還有很關(guān)鍵的一點(diǎn)是弄明白你在“產(chǎn)品簡介”里看到的這些指標(biāo)是“最大”或是“典型”值,因?yàn)橛行?shù)據(jù)表并沒有說清楚。
 
電壓等級
 
確定MOSFET的首要特性是其漏源電壓VDS,或“漏源擊穿電壓”,這是在柵極短路到源極,漏極電流在250μA情況下,MOSFET所能承受的保證不損壞的最高電壓。VDS也被稱為“25℃下的絕對最高電壓”,但是一定要記住,這個絕對電壓與溫度有關(guān),而且數(shù)據(jù)表里通常有一個“VDS溫度系數(shù)”。你還要明白,最高VDS是直流電壓加上可能在電路里存在的任何電壓尖峰和紋波。例如,如果你在電壓30V并帶有100mV、5ns尖峰的電源里使用30V器件,電壓就會超過器件的絕對最高限值,器件可能會進(jìn)入雪崩模式。在這種情況下,MOSFET的可靠性沒法得到保證。
 
在高溫下,溫度系數(shù)會顯著改變擊穿電壓。例如,一些600V電壓等級的N溝道MOSFET的溫度系數(shù)是正的,在接近最高結(jié)溫時,溫度系數(shù)會讓這些MOSFET變得象650V MOSFET。很多MOSFET用戶的設(shè)計規(guī)則要求10%~20%的降額因子。在一些設(shè)計里,考慮到實(shí)際的擊穿電壓比25℃下的額定數(shù)值要高5%~10%,會在實(shí)際設(shè)計中增加相應(yīng)的有用設(shè)計裕量,對設(shè)計是很有利的。
 
對正確選擇MOSFET同樣重要的是理解在導(dǎo)通過程中柵源電壓VGS的作用。這個電壓是在給定的最大RDS(on)條件下,能夠確保MOSFET完全導(dǎo)通的電壓。這就是為什么導(dǎo)通電阻總是與VGS水平關(guān)聯(lián)在一起的原因,而且也是只有在這個電壓下才能保證器件導(dǎo)通。一個重要的設(shè)計結(jié)果是,你不能用比用于達(dá)到RDS(on)額定值的最低VGS還要低的電壓,來使MOSFET完全導(dǎo)通。例如,用3.3V微控制器驅(qū)動MOSFET完全導(dǎo)通,你需要用在VGS= 2.5V或更低條件下能夠?qū)ǖ腗OSFET。
 
導(dǎo)通電阻,柵極電荷,以及“優(yōu)值系數(shù)”
 
MOSFET的導(dǎo)通電阻總是在一個或多個柵源電壓條件下確定的。最大RDS(on)限值可以比典型數(shù)值高20%~50%。 RDS(on)最大限值通常指的25℃結(jié)溫下的數(shù)值,而在更高的溫度下,RDS(on)可以增加30%~150%,如圖1所示。由于RDS(on)隨溫度而變,而且不能保證最小的電阻值,根據(jù)RDS(on)來檢測電流不是很準(zhǔn)確的方法。
 
菜鳥選擇MOSFET的四步驟!
圖1 RDS(on)在最高工作溫度的30%~150%這個范圍內(nèi)隨溫度增加而增加
 
導(dǎo)通電阻對N溝道和P溝道MOSFET都是十分重要的。在開關(guān)電源中,Qg是用在開關(guān)電源里的N溝道MOSFET的關(guān)鍵選擇標(biāo)準(zhǔn),因?yàn)镼g會影響開關(guān)損耗。這些損耗有兩個方面影響:一個是影響MOSFET導(dǎo)通和關(guān)閉的轉(zhuǎn)換時間;另一個是每次開關(guān)過程中對柵極電容充電所需的能量。要牢記的一點(diǎn)是,Qg取決于柵源電壓,即使用更低的Vgs可以減少開關(guān)損耗。
 
作為一種快速比較準(zhǔn)備用在開關(guān)應(yīng)用里MOSFET的方式,設(shè)計者經(jīng)常使用一個單數(shù)公式,公式包括表示傳導(dǎo)損耗RDS(on)及表示開關(guān)損耗的Qg:RDS(on) xQg。這個“優(yōu)值系數(shù)”(FOM)總結(jié)了器件的性能,可以用典型值或最大值來比較MOSFET。要保證在器件中進(jìn)行準(zhǔn)確的比較,你需要確定用于RDS(on) 和Qg的是相同的VGS,在公示里典型值和最大值沒有碰巧混在一起。較低的FOM能讓你在開關(guān)應(yīng)用里獲得更好的性能,但是不能保證這一點(diǎn)。只有在實(shí)際的電路里才能獲得最好的比較結(jié)果,在某些情況下可能需要針對每個MOSFET對電路進(jìn)行微調(diào)。
 
額定電流和功率耗散
 
基于不同的測試條件,大多數(shù)MOSFET在數(shù)據(jù)表里都有一個或多個的連續(xù)漏極電流。你要仔細(xì)看看數(shù)據(jù)表,搞清楚這個額定值是在指定的外殼溫度下(比如TC = 25℃),或是環(huán)境溫度(比如TA = 25℃)。這些數(shù)值當(dāng)中哪些是最相關(guān)將取決于器件的特性和應(yīng)用(見圖2)。
 
菜鳥選擇MOSFET的四步驟!
菜鳥選擇MOSFET的四步驟!
圖2  全部絕對最大電流和功率數(shù)值都是真實(shí)的數(shù)據(jù)
 
對于用在手持設(shè)備里的小型表面貼裝器件,關(guān)聯(lián)度最高的電流等級可能是在70℃環(huán)境溫度下的電流,對于有散熱片和強(qiáng)制風(fēng)冷的大型設(shè)備,在TA = 25℃下的電流等級可能更接近實(shí)際情況。對于某些器件來說,管芯在其最高結(jié)溫下能夠處理的電流要高于封裝所限定的電流水平,在一些數(shù)據(jù)表,這種“管芯限定”的電流等級是對“封裝限定”電流等級的額外補(bǔ)充信息,可以讓你了解管芯的魯棒性。
 
對于連續(xù)的功率耗散也要考慮類似的情況,功耗耗散不僅取決于溫度,而且取決于導(dǎo)通時間。設(shè)想一個器件在TA= 70℃情況下,以PD=4W連續(xù)工作10秒鐘。構(gòu)成“連續(xù)”時間周期的因素會根據(jù)MOSFET封裝而變化,所以你要使用數(shù)據(jù)表里的標(biāo)準(zhǔn)化熱瞬態(tài)阻抗圖,看經(jīng)過10秒、100秒或10分鐘后的功率耗散是什么樣的。如圖3所示,這個專用器件經(jīng)過10秒脈沖后的熱阻系數(shù)大約是0.33,這意味著經(jīng)過大約10分鐘后,一旦封裝達(dá)到熱飽和,器件的散熱能力只有1.33W而不是4W,盡管在良好冷卻的情況下器件的散熱能力可以達(dá)到2W左右。
 
菜鳥選擇MOSFET的四步驟!
圖3   MOSFET在施加功率脈沖情況下的熱阻
 
實(shí)際上,我們可以把MOSFET選型分成四個步驟。
 
第一步:選用N溝道還是P溝道
 
為設(shè)計選擇正確器件的第一步是決定采用N溝道還是P溝道MOSFET。在典型的功率應(yīng)用中,當(dāng)一個MOSFET接地,而負(fù)載連接到干線電壓上時,該MOSFET就構(gòu)成了低壓側(cè)開關(guān)。在低壓側(cè)開關(guān)中,應(yīng)采用N溝道MOSFET,這是出于對關(guān)閉或?qū)ㄆ骷桦妷旱目紤]。當(dāng)MOSFET連接到總線及負(fù)載接地時,就要用高壓側(cè)開關(guān)。通常會在這個拓?fù)渲胁捎肞溝道MOSFET,這也是出于對電壓驅(qū)動的考慮。  
 
要選擇適合應(yīng)用的器件,必須確定驅(qū)動器件所需的電壓,以及在設(shè)計中最簡易執(zhí)行的方法。下一步是確定所需的額定電壓,或者器件所能承受的最大電壓。額定電壓越大,器件的成本就越高。根據(jù)實(shí)踐經(jīng)驗(yàn),額定電壓應(yīng)當(dāng)大于干線電壓或總線電壓。這樣才能提供足夠的保護(hù),使MOSFET不會失效。就選擇MOSFET而言,必須確定漏極至源極間可能承受的最大電壓,即最大VDS。知道MOSFET能承受的最大電壓會隨溫度而變化這點(diǎn)十分重要。設(shè)計人員必須在整個工作溫度范圍內(nèi)測試電壓的變化范圍。額定電壓必須有足夠的余量覆蓋這個變化范圍,確保電路不會失效。設(shè)計工程師需要考慮的其他安全因素包括由開關(guān)電子設(shè)備(如電機(jī)或變壓器)誘發(fā)的電壓瞬變。不同應(yīng)用的額定電壓也有所不同;通常,便攜式設(shè)備為20V、FPGA電源為20~30V、85~220VAC應(yīng)用為450~600V。
 
第二步:確定額定電流  
 
第二步是選擇MOSFET的額定電流。視電路結(jié)構(gòu)而定,該額定電流應(yīng)是負(fù)載在所有情況下能夠承受的最大電流。與電壓的情況相似,設(shè)計人員必須確保所選的MOSFET能承受這個額定電流,即使在系統(tǒng)產(chǎn)生尖峰電流時。兩個考慮的電流情況是連續(xù)模式和脈沖尖峰。在連續(xù)導(dǎo)通模式下,MOSFET處于穩(wěn)態(tài),此時電流連續(xù)通過器件。脈沖尖峰是指有大量電涌(或尖峰電流)流過器件。一旦確定了這些條件下的最大電流,只需直接選擇能承受這個最大電流的器件便可。 
 
選好額定電流后,還必須計算導(dǎo)通損耗。在實(shí)際情況下,MOSFET并不是理想的器件,因?yàn)樵趯?dǎo)電過程中會有電能損耗,這稱之為導(dǎo)通損耗。MOSFET在“導(dǎo)通”時就像一個可變電阻,由器件的RDS(ON)所確定,并隨溫度而顯著變化。器件的功率耗損可由Iload2×RDS(ON)計算,由于導(dǎo)通電阻隨溫度變化,因此功率耗損也會隨之按比例變化。對MOSFET施加的電壓VGS越高,RDS(ON)就會越??;反之RDS(ON)就會越高。對系統(tǒng)設(shè)計人員來說,這就是取決于系統(tǒng)電壓而需要折中權(quán)衡的地方。對便攜式設(shè)計來說,采用較低的電壓比較容易(較為普遍),而對于工業(yè)設(shè)計,可采用較高的電壓。注意RDS(ON)電阻會隨著電流輕微上升。關(guān)于RDS(ON)電阻的各種電氣參數(shù)變化可在制造商提供的技術(shù)資料表中查到?! ?/div>
 
技術(shù)對器件的特性有著重大影響,因?yàn)橛行┘夹g(shù)在提高最大VDS時往往會使RDS(ON)增大。對于這樣的技術(shù),如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,從而增加與之配套的封裝尺寸及相關(guān)的開發(fā)成本。業(yè)界現(xiàn)有好幾種試圖控制晶片尺寸增加的技術(shù),其中最主要的是溝道和電荷平衡技術(shù)?! ?/div>
 
在溝道技術(shù)中,晶片中嵌入了一個深溝,通常是為低電壓預(yù)留的,用于降低導(dǎo)通電阻RDS(ON)。為了減少最大VDS對RDS(ON)的影響,開發(fā)過程中采用了外延生長柱/蝕刻柱工藝。例如,飛兆半導(dǎo)體開發(fā)了稱為SuperFET的技術(shù),針對RDS(ON)的降低而增加了額外的制造步驟。
 
這種對RDS(ON)的關(guān)注十分重要,因?yàn)楫?dāng)標(biāo)準(zhǔn)MOSFET的擊穿電壓升高時,RDS(ON)會隨之呈指數(shù)級增加,并且導(dǎo)致晶片尺寸增大。SuperFET工藝將RDS(ON)與晶片尺寸間的指數(shù)關(guān)系變成了線性關(guān)系。這樣,SuperFET器件便可在小晶片尺寸,甚至在擊穿電壓達(dá)到600V的情況下,實(shí)現(xiàn)理想的低RDS(ON)。結(jié)果是晶片尺寸可減小達(dá)35%。而對于最終用戶來說,這意味著封裝尺寸的大幅減小。
 
第三步:確定熱要求  
 
選擇MOSFET的下一步是計算系統(tǒng)的散熱要求。設(shè)計人員必須考慮兩種不同的情況,即最壞情況和真實(shí)情況。建議采用針對最壞情況的計算結(jié)果,因?yàn)檫@個結(jié)果提供更大的安全余量,能確保系統(tǒng)不會失效。在MOSFET的資料表上還有一些需要注意的測量數(shù)據(jù);比如封裝器件的半導(dǎo)體結(jié)與環(huán)境之間的熱阻,以及最大的結(jié)溫?! ?/div>
 
器件的結(jié)溫等于最大環(huán)境溫度加上熱阻與功率耗散的乘積(結(jié)溫=最大環(huán)境溫度+[熱阻×功率耗散])。根據(jù)這個方程可解出系統(tǒng)的最大功率耗散,即按定義相等于I2×RDS(ON)。由于設(shè)計人員已確定將要通過器件的最大電流,因此可以計算出不同溫度下的RDS(ON)。值得注意的是,在處理簡單熱模型時,設(shè)計人員還必須考慮半導(dǎo)體結(jié)/器件外殼及外殼/環(huán)境的熱容量;即要求印刷電路板和封裝不會立即升溫?! ?/div>
 
雪崩擊穿是指半導(dǎo)體器件上的反向電壓超過最大值,并形成強(qiáng)電場使器件內(nèi)電流增加。該電流將耗散功率,使器件的溫度升高,而且有可能損壞器件。半導(dǎo)體公司都會對器件進(jìn)行雪崩測試,計算其雪崩電壓,或?qū)ζ骷姆€(wěn)健性進(jìn)行測試。計算額定雪崩電壓有兩種方法;一是統(tǒng)計法,另一是熱計算。而熱計算因?yàn)檩^為實(shí)用而得到廣泛采用。不少公司都有提供其器件測試的詳情,如飛兆半導(dǎo)體提供了“Power MOSFET Avalanche Guidelines”( Power MOSFET Avalanche Guidelines--可以到Fairchild網(wǎng)站去下載)。除計算外,技術(shù)對雪崩效應(yīng)也有很大影響。例如,晶片尺寸的增加會提高抗雪崩能力,最終提高器件的穩(wěn)健性。對最終用戶而言,這意味著要在系統(tǒng)中采用更大的封裝件。
 
第四步:決定開關(guān)性能
  
選擇MOSFET的最后一步是決定MOSFET的開關(guān)性能。影響開關(guān)性能的參數(shù)有很多,但最重要的是柵極/漏極、柵極/ 源極及漏極/源極電容。這些電容會在器件中產(chǎn)生開關(guān)損耗,因?yàn)樵诿看伍_關(guān)時都要對它們充電。MOSFET的開關(guān)速度因此被降低,器件效率也下降。為計算開關(guān)過程中器件的總損耗,設(shè)計人員必須計算開通過程中的損耗(Eon)和關(guān)閉過程中的損耗(Eoff)。MOSFET開關(guān)的總功率可用如下方程表達(dá):Psw=(Eon+Eoff)×開關(guān)頻率。而柵極電荷(Qgd)對開關(guān)性能的影響最大。  
 
基于開關(guān)性能的重要性,新的技術(shù)正在不斷開發(fā)以解決這個開關(guān)問題。芯片尺寸的增加會加大柵極電荷;而這會使器件尺寸增大。為了減少開關(guān)損耗,新的技術(shù)如溝道厚底氧化已經(jīng)應(yīng)運(yùn)而生,旨在減少柵極電荷。舉例說,SuperFET這種新技術(shù)就可通過降低RDS(ON)和柵極電荷(Qg),最大限度地減少傳導(dǎo)損耗和提高開關(guān)性能。這樣,MOSFET就能應(yīng)對開關(guān)過程中的高速電壓瞬變(dv/dt)和電流瞬變(di/dt),甚至可在更高的開關(guān)頻率下可靠地工作。
 
 
推薦閱讀:
 
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉