推薦閱讀:
開(kāi)關(guān)模式電源的建模和環(huán)路補(bǔ)償設(shè)計(jì)
發(fā)布時(shí)間:2018-01-04 來(lái)源:Henry Zhang 責(zé)任編輯:wenwei
【導(dǎo)讀】如今的電子系統(tǒng)變得越來(lái)越復(fù)雜,電源軌和電源數(shù)量都在不斷增加。為了實(shí)現(xiàn)最佳電源解決方案密度、可靠性和成本,系統(tǒng)設(shè)計(jì)師常常需要自己設(shè)計(jì)電源解決方案,而不是僅僅使用商用磚式電源。設(shè)計(jì)和優(yōu)化高性能開(kāi)關(guān)模式電源正在成為越來(lái)越頻繁、越來(lái)越具挑戰(zhàn)性的任務(wù)。
電源環(huán)路補(bǔ)償設(shè)計(jì)常常被看作是一項(xiàng)艱難的任務(wù),對(duì)經(jīng)驗(yàn)不足的電源設(shè)計(jì)師尤其如此。在實(shí)際補(bǔ)償設(shè)計(jì)中,為了調(diào)整補(bǔ)償組件的值,常常需要進(jìn)行無(wú)數(shù)次迭代。對(duì)于一個(gè)復(fù)雜系統(tǒng)而言,這不僅耗費(fèi)大量時(shí)間,而且也不夠準(zhǔn)確,因?yàn)檫@類系統(tǒng)的電源帶寬和穩(wěn)定性裕度可能受到幾種因素的影響。本應(yīng)用指南針對(duì)開(kāi)關(guān)模式電源及其環(huán)路補(bǔ)償設(shè)計(jì),說(shuō)明了小信號(hào)建模的基本概念和方法。本文以降壓型轉(zhuǎn)換器作為典型例子,但是這些概念也能適用于其他拓?fù)?。本文還介紹了用戶易用的 LTpowerCAD™ 設(shè)計(jì)工具,以減輕設(shè)計(jì)及優(yōu)化負(fù)擔(dān)。
確定問(wèn)題
一個(gè)良好設(shè)計(jì)的開(kāi)關(guān)模式電源 (SMPS) 必須是沒(méi)有噪聲的,無(wú)論從電氣還是聲學(xué)角度來(lái)看。欠補(bǔ)償系統(tǒng)可能導(dǎo)致運(yùn)行不穩(wěn)定。不穩(wěn)定電源的典型癥狀包括:磁性組件或陶瓷電容器產(chǎn)生可聽(tīng)噪聲、開(kāi)關(guān)波形中有抖動(dòng)、輸出電壓震蕩、功率 FET 過(guò)熱等等。
不過(guò),除了環(huán)路穩(wěn)定性,還有很多原因可能導(dǎo)致產(chǎn)生不想要的震蕩。不幸的是,對(duì)于經(jīng)驗(yàn)不足的電源設(shè)計(jì)師而言,這些震蕩在示波器上看起來(lái)完全相同。即使對(duì)于經(jīng)驗(yàn)豐富的工程師,有時(shí)確定引起不穩(wěn)定性的原因也是很困難。圖 1 顯示了一個(gè)不穩(wěn)定降壓型電源的典型輸出和開(kāi)關(guān)節(jié)點(diǎn)波形。調(diào)節(jié)環(huán)路補(bǔ)償可能或不可能解決電源不穩(wěn)定問(wèn)題,因?yàn)橛袝r(shí)震蕩是由其他因素引起的,例如 PCB 噪聲。如果設(shè)計(jì)師對(duì)各種可能性沒(méi)有了然于胸,那么確定引起運(yùn)行噪聲的潛藏原因可能耗費(fèi)大量時(shí)間,令人非常沮喪。
圖 1:一個(gè) “不穩(wěn)定” 降壓型轉(zhuǎn)換器的典型輸出電壓和開(kāi)關(guān)節(jié)點(diǎn)波形
對(duì)于開(kāi)關(guān)模式電源轉(zhuǎn)換器而言,例如圖 2 所示的 LTC3851 或LTC3833 電流模式降壓型電源,一種快速確定運(yùn)行不穩(wěn)定是否由環(huán)路補(bǔ)償引起的方法是,在反饋誤差放大器輸出引腳 (ITH) 和 IC 地之間放置一個(gè) 0.1μF 的大型電容器。(或者,就電壓模式電源而言,這個(gè)電容器可以放置在放大器輸出引腳和反饋引腳之間。) 這個(gè) 0.1μF 的電容器通常被認(rèn)為足夠大,可以將環(huán)路帶寬拓展至低頻,因此可確保電壓環(huán)路穩(wěn)定性。如果用上這個(gè)電容器以后,電源變得穩(wěn)定了,那么問(wèn)題就有可能用環(huán)路補(bǔ)償解決。
圖 2:典型降壓型轉(zhuǎn)換器 (LTC3851、LTC3833、LTC3866 等)
過(guò)補(bǔ)償系統(tǒng)通常是穩(wěn)定的,但是帶寬很小,瞬態(tài)響應(yīng)很慢。這樣的設(shè)計(jì)需要過(guò)大的輸出電容以滿足瞬態(tài)調(diào)節(jié)要求,這增大了電源的總體成本和尺寸。圖 3 顯示了降壓型轉(zhuǎn)換器在負(fù)載升高 / 降低瞬態(tài)時(shí)的典型輸出電壓和電感器電流波形。圖 3a 是穩(wěn)定但帶寬 (BW) 很小的過(guò)補(bǔ)償系統(tǒng)的波形,從波形上能看到,在瞬態(tài)時(shí)有很大的 VOUT 下沖 / 過(guò)沖。圖 3b 是大帶寬、欠補(bǔ)償系統(tǒng)的波形,其中 VOUT 的下沖 / 過(guò)充小得多,但是波形在穩(wěn)態(tài)時(shí)不穩(wěn)定。圖 3c 顯示了一個(gè)設(shè)計(jì)良好的電源之負(fù)載瞬態(tài)波形,該電源具備快速和穩(wěn)定的環(huán)路。
(a) 帶寬較小但穩(wěn)定
(b) 帶寬較大但不穩(wěn)定
(c) 具快速和穩(wěn)定環(huán)路的最佳設(shè)計(jì)
圖 3:典型負(fù)載瞬態(tài)響應(yīng) ━ (a) 過(guò)補(bǔ)償系統(tǒng);(b) 欠補(bǔ)償系統(tǒng);(c) 具快速和穩(wěn)定環(huán)路的最佳設(shè)計(jì)
PWM 轉(zhuǎn)換器功率級(jí)的小信號(hào)建模
開(kāi)關(guān)模式電源 (SMPS),例如圖 4 中的降壓型轉(zhuǎn)換器,通常有兩種工作模式,采取哪種工作模式取決于其主控開(kāi)關(guān)的接通 / 斷開(kāi)狀態(tài)。因此,該電源是一個(gè)隨時(shí)間變化的非線性系統(tǒng)。為了用常規(guī)線性控制方法分析和設(shè)計(jì)補(bǔ)償電路,人們?cè)?SMPS 電路穩(wěn)態(tài)工作點(diǎn)附近,應(yīng)用針對(duì) SMPS 電路的線性化方法,開(kāi)發(fā)了一種平均式、小信號(hào)線性模型。
圖 4:降壓型 DC/DC 轉(zhuǎn)換器及其在一個(gè)開(kāi)關(guān)周期 TS 內(nèi)的兩種工作模式
建模步驟 1:通過(guò)在 TS 平均,變成不隨時(shí)間變化的系統(tǒng)
所有 SMPS 電源拓?fù)?(包括降壓型、升壓型或降壓/升壓型轉(zhuǎn)換器) 都有一個(gè)典型的 3 端子 PWM 開(kāi)關(guān)單元,該單元包括有源控制開(kāi)關(guān) Q 和無(wú)源開(kāi)關(guān) (二極管) D。為了提高效率,二極管 D 可以用同步 FET 代替,代替以后,仍然是一個(gè)無(wú)源開(kāi)關(guān)。有源端子 “a” 是有源開(kāi)關(guān)端子。無(wú)源端子 “p” 是無(wú)源開(kāi)關(guān)端子。在轉(zhuǎn)換器中,端子 a 和端子 p 始終連接到電壓源,例如降壓型轉(zhuǎn)換器中的 VIN 和地。公共端子 “c” 連接至電流源,在降壓型轉(zhuǎn)換器中就是電感器。
為了將隨時(shí)間變化的 SMPS 變成不隨時(shí)間變化的系統(tǒng),可以通過(guò)將有源開(kāi)關(guān) Q 變成平均式電流源、以及將無(wú)源開(kāi)關(guān) (二極管) D 變成平均式電壓源這種方式,應(yīng)用 3 端子 PWM 單元平均式建模方法。平均式開(kāi)關(guān) Q 的電流等于 d • iL,而平均式開(kāi)關(guān) D 的電壓等于 d • vap,,如圖 5 所示。平均是在一個(gè)開(kāi)關(guān)周期 TS 之內(nèi)進(jìn)行的。既然電流源和電壓源都是兩個(gè)變量的乘積,那么該系統(tǒng)仍然是非線性系統(tǒng)。
圖 5:建模步驟 1:將 3 端子 PWM 開(kāi)關(guān)單元變成平均式電流源和電壓源
建模步驟 2:線性AC 小信號(hào)建模
下一步是展開(kāi)變量的乘積以得到線性 AC 小信號(hào)模型。例如,變量,其中 X 是 DC 穩(wěn)態(tài)的工作點(diǎn),而是 AC 小信號(hào)圍繞 X 的變化。因此,兩個(gè)變量 x • y 的積可以重寫為:
圖 6:為線性小信號(hào) AC 部分和 DC 工作點(diǎn)展開(kāi)兩個(gè)變量的乘積
圖 6 顯示,線性小信號(hào) AC 部分可以與 DC 工作點(diǎn) (OP) 部分分開(kāi)。兩個(gè) AC 小信號(hào)變量的乘積可以忽略,因?yàn)檫@是更加小的變量。按照這一概念,平均式 PWM 開(kāi)關(guān)單元可以重畫為如圖 7 所示的電路。
圖 7:建模步驟 2:通過(guò)展開(kāi)兩個(gè)變量的乘積給 AC 小信號(hào)建模
通過(guò)將上述兩步建模方法應(yīng)用到降壓型轉(zhuǎn)換器上 (如圖 8 所示),該降壓型轉(zhuǎn)換器的功率級(jí)就可以建模為簡(jiǎn)單的電壓源,其后跟隨的是一個(gè) L/C 二階濾波器網(wǎng)絡(luò)。
圖 8:將降壓型轉(zhuǎn)換器變成平均式、AC 小信號(hào)線性電路
以圖 8 所示線性電路為基礎(chǔ),既然控制信號(hào)是占空比 d,輸出信號(hào)是 vOUT,那么在頻率域,該降壓型轉(zhuǎn)換器就可以用占空比至輸出的轉(zhuǎn)移函數(shù) Gdv(s) 來(lái)描述:
其中,
函數(shù) Gdv(s) 顯示,該降壓型轉(zhuǎn)換器的功率級(jí)是一個(gè)二階系統(tǒng),在頻率域有兩個(gè)極點(diǎn)和一個(gè)零點(diǎn)。零點(diǎn) sZ_ESR 由輸出電容器 C 及其 ESR rC 產(chǎn)生。諧振雙極點(diǎn) 由輸出濾波器電感器 L 和電容器 C 產(chǎn)生。
既然極點(diǎn)和零點(diǎn)頻率是輸出電容器及其 ESR 的函數(shù),那么函數(shù) Gdv(s) 的波德圖隨所選擇電源輸出電容器的不同而變化,如圖 9 所示。輸出電容器的選擇對(duì)該降壓型轉(zhuǎn)換器功率級(jí)的小信號(hào)特性影響很大。如果該電源使用小型輸出電容或 ESR 非常低的輸出電容器,那么 ESR 零點(diǎn)頻率就可能遠(yuǎn)遠(yuǎn)高于諧振極點(diǎn)頻率。功率級(jí)相位延遲可能接近 –180°。結(jié)果,當(dāng)負(fù)壓反饋環(huán)路閉合時(shí),可能很難補(bǔ)償該環(huán)路。
圖 9:COUT 電容器變化導(dǎo)致功率級(jí) Gdv(s) 相位顯著變化
升壓型轉(zhuǎn)換器的小信號(hào)模型
利用同樣的 3 端子 PWM 開(kāi)關(guān)單元平均式小信號(hào)建模方法,也可以為升壓型轉(zhuǎn)換器建模。圖 10 顯示了怎樣為升壓型轉(zhuǎn)換器建模,并將其轉(zhuǎn)換為線性 AC 小信號(hào)模型電路。
圖 10:升壓型轉(zhuǎn)換器的 AC 小信號(hào)建模電路
升壓型轉(zhuǎn)換器功率級(jí)的轉(zhuǎn)移函數(shù) Gdv(s) 可從等式 5 中得出。它也是一個(gè)二階系統(tǒng),具有 L/C 諧振。與降壓型轉(zhuǎn)換器不同,升壓型轉(zhuǎn)換器除了 COUT ESR 零點(diǎn),還有一個(gè)右半平面零點(diǎn) (RHPZ) 。該 RHPZ 導(dǎo)致增益升高,但是相位減小 (變負(fù))。等式 6 也顯示,這個(gè) RHPZ 隨占空比和負(fù)載電阻不同而變化。既然占空比是 VIN 的函數(shù),那么升壓型轉(zhuǎn)換器功率級(jí)的轉(zhuǎn)移函數(shù) Gdv(s) 就隨 VIN 和負(fù)載電流而變。在低 VIN 和大負(fù)載 IOUT_MAX 時(shí),RHPZ 位于最低頻率處,并導(dǎo)致顯著的相位滯后。這就使得難以設(shè)計(jì)帶寬很大的升壓型轉(zhuǎn)換器。作為一個(gè)一般的設(shè)計(jì)原則,為了確保環(huán)路穩(wěn)定性,人們?cè)O(shè)計(jì)升壓型轉(zhuǎn)換器時(shí),限定其帶寬低于其最低 RHPZ 頻率的 1/10。其他幾種拓?fù)?,例如正至?fù)降壓 / 升壓、反激式 (隔離型降壓 / 升壓)、SEPIC 和 CUK 轉(zhuǎn)換器,所有都存在不想要的 RHPZ,都不能設(shè)計(jì)成帶寬很大、瞬態(tài)響應(yīng)很快的解決方案。
圖 11:升壓型轉(zhuǎn)換器功率級(jí)小信號(hào)占空比至 VO 轉(zhuǎn)移函數(shù)隨 VIN 和負(fù)載而改變
用電壓模式控制閉合反饋環(huán)路
輸出電壓可以由閉合的反饋環(huán)路系統(tǒng)調(diào)節(jié)。例如,在圖 12 中,當(dāng)輸出電壓 VOUT 上升時(shí),反饋電壓 VFB 上升,負(fù)反饋誤差放大器的輸出下降,因此占空比 d 下降。結(jié)果,VOUT 被拉低,以使 VFB = VREF。誤差運(yùn)算放大器的補(bǔ)償網(wǎng)絡(luò)可以是 I 型、II 型或 III 型反饋放大器網(wǎng)絡(luò)。只有一個(gè)控制環(huán)路調(diào)節(jié) VOUT。這種控制方法稱為電壓模式控制。凌力爾特公司的 LTC3861 和 LTC3882 就是典型的電壓模式降壓型控制器。
圖 12:具閉合電壓反饋環(huán)路的電壓模式降壓型轉(zhuǎn)換器方框圖
為了優(yōu)化電壓模式 PWM 轉(zhuǎn)換器,如圖 13 所示,通常需要一種復(fù)雜的 III 型補(bǔ)償網(wǎng)絡(luò),以憑借充足的相位裕度設(shè)計(jì)一個(gè)快速環(huán)路。如等式 7 和圖 14 所示,這種補(bǔ)償網(wǎng)絡(luò)在頻率域有 3 個(gè)極點(diǎn)和兩個(gè)零點(diǎn):低頻積分極點(diǎn) (1/s) 提供高的 DC 增益,以最大限度減小 DC 調(diào)節(jié)誤差,兩個(gè)零點(diǎn)放置在系統(tǒng)諧振頻率 f0 附近,以補(bǔ)償由功率級(jí)的 L 和 C 引起的 –180° 相位延遲,在 fESR 處放置第一個(gè)高頻極點(diǎn),以消除 COUT ESR 零點(diǎn),第二個(gè)高頻極點(diǎn)放置在想要的帶寬 fC 以外,以衰減反饋環(huán)路中的開(kāi)關(guān)噪聲。III 型補(bǔ)償相當(dāng)復(fù)雜,因?yàn)檫@種補(bǔ)償需要 6 個(gè) R/C 值。找到這些值的最佳組合是個(gè)非常耗時(shí)的任務(wù)。
圖 13:用于電壓模式轉(zhuǎn)換器的 III 型反饋補(bǔ)償網(wǎng)絡(luò)
其中
圖 14:III 型補(bǔ)償 A(s) 提供 3 個(gè)極點(diǎn)和兩個(gè)零點(diǎn),以實(shí)現(xiàn)最佳的總體環(huán)路增益 TV(s)
為了簡(jiǎn)化和自動(dòng)化開(kāi)關(guān)模式電源設(shè)計(jì),凌力爾特開(kāi)發(fā)了 LTpowerCAD 設(shè)計(jì)工具。這工具使環(huán)路補(bǔ)償設(shè)計(jì)任務(wù)變得簡(jiǎn)單多了。LTpowerCAD 是一款可在 www.linear.com.cn/LTpowerCAD 免費(fèi)下載的設(shè)計(jì)工具。該軟件幫助用戶選擇電源解決方案、設(shè)計(jì)功率級(jí)組件以及優(yōu)化電源效率和環(huán)路補(bǔ)償。如圖 15 例子所示,就給定的凌力爾特電壓模式控制器而言 (例如 LTC3861),其環(huán)路參數(shù)可用該設(shè)計(jì)工具建模。對(duì)于一個(gè)給定的功率級(jí),用戶可以確定極點(diǎn)和零點(diǎn)位置 (頻率),然后按照該軟件的指導(dǎo),帶入真實(shí)的 R/C 值,實(shí)時(shí)檢查總體環(huán)路增益和負(fù)載瞬態(tài)性能。之后,設(shè)計(jì)方案還可以輸出到一個(gè) LTspice® 仿真電路上,進(jìn)行實(shí)時(shí)仿真。
(a) LTpowerCAD 功率級(jí)設(shè)計(jì)頁(yè)面
(b) LTpowerCAD 環(huán)路補(bǔ)償和負(fù)載瞬態(tài)設(shè)計(jì)頁(yè)面
圖 15:LTpowerCAD 設(shè)計(jì)工具減輕了電壓模式轉(zhuǎn)換器 III 型環(huán)路設(shè)計(jì)的負(fù)擔(dān)
為電流模式控制增加電流環(huán)路
單一環(huán)路電壓模式控制受到一些限制。這種模式需要相當(dāng)復(fù)雜的 III 型補(bǔ)償網(wǎng)絡(luò)。環(huán)路性能可能隨輸出電容器參數(shù)及寄生性變化而出現(xiàn)大幅改化,尤其是電容器 ESR 和 PCB 走線阻抗。一個(gè)可靠的電源還需要快速過(guò)流保護(hù),這就需要一種快速電流檢測(cè)方法和快速保護(hù)比較器。對(duì)于需要很多相位并聯(lián)的大電流解決方案而言,還需要一個(gè)額外的電流均分網(wǎng)絡(luò) / 環(huán)路。
給電壓模式轉(zhuǎn)換器增加一個(gè)內(nèi)部電流檢測(cè)通路和反饋環(huán)路,使其變成一個(gè)電流模式控制的轉(zhuǎn)換器。圖 16 和 17 顯示了典型峰值電流模式降壓型轉(zhuǎn)換器及其工作方式。內(nèi)部時(shí)鐘接通頂端的控制 FET。之后,只要所檢測(cè)的峰值電感器電流信號(hào)達(dá)到放大器 ITH 引腳電壓 VC,頂端的 FET 就斷開(kāi)。從概念上來(lái)看,電流環(huán)路使電感器成為一個(gè)受控電流源。因此,具閉合電流環(huán)路的功率級(jí)變成了 1 階系統(tǒng),而不是具 L/C 諧振的 2 階系統(tǒng)。結(jié)果,功率級(jí)極點(diǎn)引起的相位滯后從 180° 減少為約 90°。相位延遲減少使補(bǔ)償外部電壓環(huán)路變得容易多了。相位延遲減少還降低了電源對(duì)輸出電容器或電感變化的敏感度,如圖 18 所示。
圖 16:具內(nèi)部電流環(huán)路和外部電壓反饋環(huán)路的電流模式轉(zhuǎn)換器方框圖
圖 17:峰值電流模式控制信號(hào)波形
圖 18:具閉合電流環(huán)路的新功率級(jí)轉(zhuǎn)移函數(shù) GCV(s)
電感器電流信號(hào)可以直接用一個(gè)附加的 RSENSE 檢測(cè),或者間接地通過(guò)電感器繞組 DCR 或 FET RDS(ON) 檢測(cè)。電流模式控制還提供其他幾項(xiàng)重要的好處。如圖 17 所示,既然電感器電流以逐周期方式、通過(guò)放大器輸出電壓檢測(cè)和限制,那么系統(tǒng)在過(guò)載或電感器電流飽和時(shí),就能夠更準(zhǔn)確和更快速地限制電流。在加電或輸入電壓瞬態(tài)時(shí),電感器浪涌電流也受到了嚴(yán)格控制。當(dāng)多個(gè)轉(zhuǎn)換器 / 相位并聯(lián)時(shí),通過(guò)將放大器 ITH 引腳連到一起,憑借電流模式控制,可以在多個(gè)電源之間非常容易地均分電流,從而實(shí)現(xiàn)了一個(gè)可靠的多項(xiàng) (PolyPhase®) 設(shè)計(jì)。典型電流模式控制器包括凌力爾特公司的 LTC3851A、LTC3833 和 LTC3855 等。
峰值與谷值電流模式控制方法
圖 16 和 17 所示的電流模式控制方法是峰值電感器電流模式控制。轉(zhuǎn)換器以固定開(kāi)關(guān)頻率 fSW 工作,從而非常容易實(shí)現(xiàn)時(shí)鐘同步和相位交錯(cuò),尤其是對(duì)于并聯(lián)轉(zhuǎn)換器。然而,如果在控制 FET 柵極關(guān)斷后,緊接著就發(fā)生負(fù)載升壓瞬態(tài),那么轉(zhuǎn)換器就必須等待一段時(shí)間,這段時(shí)間等于 FET 斷開(kāi)時(shí)間 TOFF,直到下一個(gè)時(shí)鐘周期響應(yīng)該瞬態(tài)為止。這個(gè) TOFF 延遲通常不是問(wèn)題,但是對(duì)于一個(gè)真正的快速瞬態(tài)系統(tǒng),它卻很重要。此外,控制 FET 的最短接通時(shí)間 (TON_min) 不可能非常短,因?yàn)殡娏鞅容^器需要噪聲消隱時(shí)間以避免錯(cuò)誤觸發(fā)。對(duì)于高 VIN/VOUT 降壓比應(yīng)用而言,這限制了最高開(kāi)關(guān)頻率 fSW。此外,峰值電流模式控制還需要一定的斜率補(bǔ)償,以在占空比超過(guò) 50% 時(shí)保持電流環(huán)路穩(wěn)定。對(duì)于凌力爾特公司的控制器而言,這不是個(gè)問(wèn)題。凌力爾特的控制器通常有內(nèi)置自適應(yīng)斜率補(bǔ)償,以在整個(gè)占空比范圍內(nèi)確保電流環(huán)路穩(wěn)定性。LTC3851A 和 LTC3855 是典型的峰值電流模式控制器。
谷值電流模式控制器產(chǎn)生受控 FET 接通時(shí)間,并一直等待直到電感器谷值電流達(dá)到其谷值限制 (VITH) 以才再次接通控制 FET。因此,電源可以在控制 FET 的 TOFF 時(shí)間響應(yīng)負(fù)載升高瞬態(tài)。此外,既然接通時(shí)間是固定的,那么控制 FET 的 TON_min 可以比峰值電流模式控制時(shí)短,以允許更高的 fSW,實(shí)現(xiàn)高降壓比應(yīng)用。谷值電流模式控制不需要額外的斜率補(bǔ)償就能實(shí)現(xiàn)電流環(huán)路穩(wěn)定性。然而,使用谷值電流模式控制時(shí),因?yàn)樵试S開(kāi)關(guān)周期 TS 變化,所以在示波器上,開(kāi)關(guān)節(jié)點(diǎn)波形可能出現(xiàn)更大的抖動(dòng)。LTC3833 和 LTC3838 是典型的谷值電流模式控制器。
為具備閉合電流環(huán)路的新功率級(jí)建模
圖 19 顯示,通過(guò)僅將電感器作為受放大器 ITH 引腳電壓控制的電流源,產(chǎn)生了一個(gè)簡(jiǎn)化、具內(nèi)部電流環(huán)路的降壓型轉(zhuǎn)換器功率級(jí)的一階模型。類似方法也可用于其他具電感器電流模式控制的拓?fù)?。這個(gè)簡(jiǎn)單的模型有多好? 圖 20 顯示了該一階模型和一個(gè)更復(fù)雜但準(zhǔn)確的模型之間轉(zhuǎn)移函數(shù) GCV(s) = vOUT/vC 的比較結(jié)果。這是一個(gè)以 500kHz 開(kāi)關(guān)頻率運(yùn)行的電流模式降壓型轉(zhuǎn)換器。在這個(gè)例子中,一階模型直到 10kHz 都是準(zhǔn)確的,約為開(kāi)關(guān)頻率 fSW 的 1/50。之后,一階模型的相位曲線就不再準(zhǔn)確了。因此這個(gè)簡(jiǎn)化的模型僅對(duì)于帶寬較小的設(shè)計(jì)才好用。
圖 19:電流模式降壓型轉(zhuǎn)換器的簡(jiǎn)單一階模型
圖 20:電流模式降壓型轉(zhuǎn)換器的一階模型和準(zhǔn)確模型之間的 GCV(s) 比較
實(shí)際上,針對(duì)電流模式轉(zhuǎn)換器,在整個(gè)頻率范圍內(nèi)開(kāi)發(fā)一個(gè)準(zhǔn)確的小信號(hào)模型相當(dāng)復(fù)雜。R. Ridley的電流模式模型 [3] 在電源行業(yè)是最流行的一種模型,用于峰值電流模式和谷值電流模式控制。最近,Jian Li 為電流模式控制開(kāi)發(fā)了一種更加直觀的電路模型 [4],該模型也可用于其他電流模式控制方法。為了簡(jiǎn)便易用,LTpowerCAD 設(shè)計(jì)工具實(shí)現(xiàn)了這些準(zhǔn)確模型,因此,即使一位經(jīng)驗(yàn)不足的用戶,對(duì) Ridley 或 Jian Li 的模型沒(méi)有太多了解,也可以非常容易地設(shè)計(jì)一個(gè)電流模式電源。
電流模式轉(zhuǎn)換器的環(huán)路補(bǔ)償設(shè)計(jì)
在圖 16 和圖 21 中,具閉合電流環(huán)路的功率級(jí) Gcv(s) 由功率級(jí)組件的選擇決定,主要由電源的 DC 規(guī)格 / 性能決定。外部電壓環(huán)路增益 T(s) = GCV(s) • A(s) • KREF(s) 因此由電壓反饋級(jí) KREF(s) 和補(bǔ)償級(jí) A(s) 決定。這兩個(gè)級(jí)的設(shè)計(jì)將極大地決定電源的穩(wěn)定性和瞬態(tài)響應(yīng)。
圖 21:反饋環(huán)路設(shè)計(jì)的控制方框圖
總之,閉合電壓環(huán)路 T(s) 的性能由兩個(gè)重要參數(shù)決定:環(huán)路帶寬和環(huán)路穩(wěn)定性裕度。環(huán)路帶寬由交叉頻率 fC 量化,在這一頻點(diǎn)上,環(huán)路增益 T(s) 等于1 (0dB)。環(huán)路穩(wěn)定性裕度一般由相位裕度或增益裕度量化。環(huán)路相位裕度 33333 的定義是在交叉頻率點(diǎn)上總體 T(s) 相位延遲和 –180° 之差。通常需要 45° 或 60° 最小相位裕度以確保穩(wěn)定性。對(duì)于電流模式控制而言,為了衰減電流環(huán)路中的開(kāi)關(guān)噪聲,環(huán)路增益裕度定義為在 ½ • fSW 處的衰減。一般而言,希望在 ½ • fSW 處有最小 8dB 衰減 (-8dB 環(huán)路增益)。
選擇想要的電壓環(huán)路交叉頻率 fC
更大的帶寬有助于實(shí)現(xiàn)更快的瞬態(tài)響應(yīng)。不過(guò),增大帶寬通常會(huì)降低穩(wěn)定性裕度,使控制環(huán)路對(duì)開(kāi)關(guān)噪聲更加敏感。一個(gè)最佳設(shè)計(jì)通常在帶寬 (瞬態(tài)響應(yīng)) 和穩(wěn)定性裕度之間實(shí)現(xiàn)了良好的平衡。實(shí)際上,電流模式控制還通過(guò)在 1/2 • fSW 處電流信號(hào)的采樣效應(yīng) [3],而引入了一對(duì)雙極點(diǎn) 2222 。這些雙極點(diǎn)在 ½ • fSW 附近引入了不想要的相位延遲。一般而言,要獲得充足的相位裕度并充分衰減 PCB 噪聲,交叉頻率就要選為低于相位開(kāi)關(guān)頻率 fSW 的 1/10 至 1/6。
用 R1、R2、C1 和 C2 設(shè)計(jì)反饋分壓器網(wǎng)絡(luò) Kref(s)
在圖 16 中,DC 增益 KREF 的 Kref(s) 是內(nèi)部基準(zhǔn)電壓 VREF 和想要的 DC 輸出電壓 Vo 之比。電阻器 R1 和 R2 用來(lái)設(shè)定想要的輸出 DC 電壓。
其中
可以增加可選電容器 C2,以改進(jìn)反饋環(huán)路的動(dòng)態(tài)響應(yīng)。從概念上來(lái)說(shuō),在高頻時(shí),C2 為輸出 AC 電壓信號(hào)提供低阻抗前饋通路,因此,加速了瞬態(tài)響應(yīng)。但是 C2 還有可能給控制環(huán)路帶來(lái)不想要的開(kāi)關(guān)噪聲。因此,可以增加一個(gè)可選 C1 濾波器電容器,以衰減開(kāi)關(guān)噪聲。如等式 11 所示,包括 C1 和 C2 的總體電阻器分壓器轉(zhuǎn)移函數(shù) KREF(s) 有一個(gè)零點(diǎn)和一個(gè)極點(diǎn)。圖 22 顯示了 KREF(s) 的波德圖。通過(guò)設(shè)計(jì)成 fz_ref < fp_ref,C1 和 C2 與 R1 和 R2 一起,導(dǎo)致在以 fCENTER 為中心的頻帶中相位增大,相位增大量在等式 14 中給出。如果 fCENTER 放置在目標(biāo)交叉頻率 fC 處,那么 Kref(s) 使相位超前于電壓環(huán)路,提高了相位裕度。另一方面,圖 22 還顯示,C1 和 C2 提高了高頻時(shí)的分壓器增益。這種情況是不想要的,因?yàn)楦哳l增益提高使控制環(huán)路對(duì)開(kāi)關(guān)噪聲更加敏感。C1 和 C2 導(dǎo)致的高頻增益提高在等式 15 中給出。
其中
和
圖 22:電阻器分壓器增益 KREF(s) 的轉(zhuǎn)移函數(shù)波德圖
就給定的 C1 和 C2 而言,分壓器網(wǎng)絡(luò)導(dǎo)致的相位增大量 φREF 可以用等式 16 計(jì)算。此外,在 C2 >> C1 的情況下,就給定輸出電壓而言,最大相位增大量由等式 17 給出。從該等式中也可以看出,最大相位增大量 φREF_max 由分比 KREF = VREF/VO 決定。既然 VREF 就給定控制器而言是固定的,那么用更高的輸出電壓 VO 可以得到更大的相位增大量。
選擇φREF、C1 和 C2 時(shí),需要在想要的相位增大量與不想要的高頻增益提高量之間做出權(quán)衡。之后,需要檢查總體環(huán)路增益以實(shí)現(xiàn)最佳值。
設(shè)計(jì)電壓環(huán)路 ITH 誤差放大器的 II 型補(bǔ)償網(wǎng)絡(luò)
ITH 補(bǔ)償 A(s) 是環(huán)路補(bǔ)償設(shè)計(jì)中最關(guān)鍵的一步,因?yàn)檫@一步?jīng)Q定 DC 增益、交叉頻率 (帶寬) 和電源電壓環(huán)路的相位 / 增益裕度。就一個(gè)電流源輸出、gm 跨導(dǎo)型放大器而言,其轉(zhuǎn)移函數(shù) A(s) 由等式 18 給出:
其中,gm 是跨導(dǎo)誤差放大器的增益。Zith(s) 是放大器輸出 ITH 引腳上補(bǔ)償網(wǎng)絡(luò)的阻抗。
從圖 21 所示的控制方框圖中可以看出,電壓環(huán)路調(diào)節(jié)誤差可由以下等式量化:
因此,為了最大限度降低 DC 調(diào)節(jié)誤差,大的 DC 增益 A(s) 是非常想要的。為了最大限度提高 DC 增益 A(s),首先要將電容器 Cth 放在放大器輸出 ITH 引腳處以形成一個(gè)積分器。在這種情況下,A(s) 傳輸增益為:
圖 23 顯示了 A(s) 的原理圖及其波德圖。如圖所示,電容器 Cth 以無(wú)限高的 DC增益在 A(s) 中產(chǎn)生了一個(gè)積分項(xiàng)。不幸的是,除了初始的 –180° 負(fù)反饋,Cth 又增加了 –90° 的相位滯后。將一階系統(tǒng)功率級(jí) GCV(s) 的 –90° 相位包括進(jìn)來(lái)以后,在交叉頻率 fC 處的總體電壓環(huán)路相位接近 –360°,該環(huán)路接近不穩(wěn)定狀態(tài)。
實(shí)際上,電流源 gm 放大器的輸出阻抗不是一個(gè)無(wú)限大的值。在圖 24 中,Ro 是 gm 放大器 ITH 引腳的內(nèi)部輸出阻抗。凌力爾特公司控制器的 Ro 通常較高,在 500kΩ 至 1MΩ 范圍。因此,單個(gè)電容器的 A(s) 轉(zhuǎn)移函數(shù)變成了等式 21。該轉(zhuǎn)移函數(shù)有一個(gè)低頻極點(diǎn) fpo (由 RO · Cth 決定)。因此 A(s) 的 DC 增益實(shí)際上是 gm · RO。如圖 24 所示,在預(yù)期的交叉頻率 fc_exp 處,A(s) 仍然有 –90° 的相位滯后。
其中
圖 23:步驟 1:簡(jiǎn)單的電容器補(bǔ)償網(wǎng)絡(luò) A(s) 及其波德圖
圖 24:包括 gm 放大器輸出阻抗 RO 的單極點(diǎn) A(s)
為了提高 fC 處的相位,增加一個(gè)與 Cth 串聯(lián)的電阻器 Rth 以產(chǎn)生一個(gè)零點(diǎn),如等式 23 和圖 25 所示。該零點(diǎn)貢獻(xiàn)高至 +90° 超前相位。如圖 25 所示,如果零點(diǎn) sthz 放置在交叉頻率 fC 之前,那么 A(s) 在 fC 處的相位可以顯著地增大。因此,這樣做提高了電壓環(huán)路的相位裕度。
其中
不幸的是,增加這個(gè)零點(diǎn) sthz 也有害處,增益 A(s) 在 fC 以外的高頻范圍內(nèi)顯著地提高。因此,由于在開(kāi)關(guān)頻率處 A(s) 衰減較少,所以開(kāi)關(guān)噪聲更有可能進(jìn)入控制環(huán)路。為了補(bǔ)償這一增益提高并衰減 PCB 噪聲,在 ITH 引腳至 IC 信號(hào)地之間有必要增加另一個(gè)小型陶瓷電容器 Cthp,如圖 26 所示。一般情況下,選擇 Cthp << Cth。在 PCB 布局中,濾波器電容器 Cthp 應(yīng)該放置在盡可能靠近 ITH 引腳的地方。通過(guò)增加 Cthp,最終補(bǔ)償轉(zhuǎn)移函數(shù) A(s) 由等式 25 和 26 給出,其波德圖如圖 26 所示。Cthp 引入一個(gè)高頻極點(diǎn) sthp,該極點(diǎn)應(yīng)該位于交叉頻率 fC 和開(kāi)關(guān)頻率 fS 之間。Cthp 降低了 fS 處的 A(s) 增益,但是也有可能減小 fC 的相位。sthp 的位置是相位裕度和電源 PCB 抗噪聲性能之間權(quán)衡的結(jié)果。
圖 25:步驟 2:增加 RTH 零點(diǎn)以增大相位 —— 單極點(diǎn)、單零點(diǎn)補(bǔ)償 A(s)
圖 26:步驟 3:增加高頻去耦 Cthp —— 雙極點(diǎn)、單零點(diǎn)補(bǔ)償 A(s)
其中
既然電流模式功率級(jí)是一個(gè)準(zhǔn)單極點(diǎn)系統(tǒng),那么圖 26 所示的雙極點(diǎn)和單零點(diǎn)補(bǔ)償網(wǎng)絡(luò)一般足夠提供所需的相位裕度了。
放大器 ITH 引腳上這個(gè)雙極點(diǎn)、單零點(diǎn)補(bǔ)償網(wǎng)絡(luò)也稱為 II 型補(bǔ)償網(wǎng)絡(luò)??傊?,有兩個(gè)電容器 CTH 和 CTHP 和一個(gè)電阻器 RTH。這個(gè) R/C 網(wǎng)絡(luò)與放大器輸出電阻 Ro 一起,產(chǎn)生了一個(gè)如圖 27 所示的典型轉(zhuǎn)移函數(shù),一個(gè)零點(diǎn)位于 fz1 處,兩個(gè)極點(diǎn)位于 fpo 和 fp2 處。
圖 27:II 型補(bǔ)償網(wǎng)絡(luò)轉(zhuǎn)移函數(shù)的概念圖
補(bǔ)償 R/C 值與負(fù)載階躍瞬態(tài)響應(yīng)
前一節(jié)講述了 II 型補(bǔ)償網(wǎng)絡(luò)在頻率域的表現(xiàn)。在一個(gè)閉合環(huán)路電源設(shè)計(jì)中,一個(gè)重要的性能參數(shù)是負(fù)載升高 (負(fù)載下降) 瞬態(tài)時(shí)電源的輸出電壓下沖 (或過(guò)充),這個(gè)參數(shù)通常直接受環(huán)路補(bǔ)償設(shè)計(jì)的影響。
1)CTH 對(duì)負(fù)載階躍瞬態(tài)的影響。CTH 影響低頻極點(diǎn) fpo 和零點(diǎn) fz1 的位置。如圖 28 所示,CTH 越小,轉(zhuǎn)移函數(shù) A(s) 的低至中頻增益能越高。結(jié)果,這有可能縮短負(fù)載瞬態(tài)響應(yīng)達(dá)到穩(wěn)定的時(shí)間,而對(duì) VOUT 下沖 (或過(guò)沖) 幅度沒(méi)有很大影響。另一方面,CTH 越小,意味著 fz1 頻率越高。這有可能在目標(biāo)交叉頻率 fC 處因 fz1 升高而減少增加的相位。
圖 28:CTH 對(duì)轉(zhuǎn)移函數(shù)和負(fù)載瞬態(tài)的影響
2)RTH 對(duì)負(fù)載階躍瞬態(tài)的影響。圖 29 顯示,RTH 影響零點(diǎn) fz1 和極點(diǎn) fp2 的位置。更重要的是,RTH 越大,fz1 和 fp2 之間的 A(s) 增益就越高。因此 RTH 增大會(huì)直接提高電源帶寬 fc,并在負(fù)載瞬態(tài)時(shí)降低 VOUT 的下沖 / 過(guò)沖。然而,如果 RTH 太大,電源帶寬 fc 可能過(guò)高,相位裕度就不夠了。
圖 29:RTH 對(duì)轉(zhuǎn)移函數(shù)和負(fù)載瞬態(tài)的影響
3) CTHP 對(duì)負(fù)載階躍瞬態(tài)的影響。圖 30 顯示,CTHP 影響極點(diǎn) fp2 的位置。CTHP 用作去耦電容器,降低 ITH 引腳的開(kāi)關(guān)噪聲,以最大限度減小開(kāi)關(guān)抖動(dòng)。如果電源帶寬 fc > fp2,那么 CTHP 對(duì)負(fù)載瞬態(tài)影響就不太大。如果 CTHP 設(shè)計(jì)過(guò)度,導(dǎo)致 fp2 靠近 fc,那么它就可能減小帶寬和相位裕度,導(dǎo)致瞬態(tài)下沖 / 過(guò)沖增大。
圖 30:CTHP 對(duì)轉(zhuǎn)移函數(shù)和負(fù)載瞬態(tài)的影響
用 LTpowerCAD 設(shè)計(jì)工具設(shè)計(jì)一個(gè)電流模式電源
通過(guò) LTpowerCAD 設(shè)計(jì)工具,用戶可以非常容易地設(shè)計(jì)和優(yōu)化凌力爾特電流模式電源的環(huán)路補(bǔ)償及負(fù)載瞬態(tài)性能。很多凌力爾特產(chǎn)品都可用其環(huán)路參數(shù)準(zhǔn)確地建模。首先,用戶需要先設(shè)計(jì)功率級(jí),在這一步,他們需要設(shè)計(jì)電流檢測(cè)網(wǎng)絡(luò),確保為 IC 提供足夠的 AC 檢測(cè)信號(hào)。之后,在環(huán)路設(shè)計(jì)頁(yè)面,用戶可以通過(guò)簡(jiǎn)便地移動(dòng)滑動(dòng)條,觀察總體環(huán)路帶寬、相位裕度和相應(yīng)的負(fù)載瞬態(tài)性能,依此調(diào)節(jié)環(huán)路補(bǔ)償 R/C 值。就一個(gè)降壓型轉(zhuǎn)換器而言,用戶通常需要設(shè)計(jì)低于 1/6 fSW 的帶寬,有至少 45° (或 60°) 的相位裕度,在 ½ fSW 處至少有 8dB 的總體環(huán)路增益衰減。就一個(gè)升壓型轉(zhuǎn)換器而言,由于存在右半平面零點(diǎn) (RHPZ),所以用戶需要設(shè)計(jì)低于最差情況 RHPZ 頻率 1/10 的電源帶寬。LTpowerCAD 設(shè)計(jì)文件可以輸出到 LTspice 進(jìn)行實(shí)時(shí)仿真,以檢查詳細(xì)的電源動(dòng)態(tài)性能,例如負(fù)載瞬態(tài)、加電 / 斷電、過(guò)流保護(hù) … 等等。
圖 31:LTpowerCAD 設(shè)計(jì)工具減輕了環(huán)路補(bǔ)償設(shè)計(jì)和瞬態(tài)優(yōu)化負(fù)擔(dān)
測(cè)量電源環(huán)路增益
LTpowerCAD 和 LTspice 程序不是用來(lái)取代真實(shí)電源的最終工作臺(tái)環(huán)路增益測(cè)量。在將設(shè)計(jì)投入最終生產(chǎn)之前,總是有必要進(jìn)行測(cè)量。盡管電源模型理論上是正確,但是這些模型不可能全面考慮到電路寄生性和組件非線性,例如輸出電容器的 ESR 變化、電感器和電容器的非線性 … 等等。另外,電路 PCB 噪聲和有限的測(cè)量準(zhǔn)確度還可能引起測(cè)量誤差。這就是為什么有時(shí)理論模型和測(cè)量結(jié)果可能相差很大的原因。如果發(fā)生這種情況,負(fù)載瞬態(tài)測(cè)試就可以用來(lái)進(jìn)一步確認(rèn)環(huán)路穩(wěn)定性。
圖 32 顯示了用頻率分析儀系統(tǒng)測(cè)量一個(gè)非隔離式電源的典型電源環(huán)路增益的測(cè)量配置。為了測(cè)量環(huán)路增益,在電壓反饋環(huán)路中插入了一個(gè) 50Ω 至 100Ω 的電阻,并給這個(gè)電阻器加上了一個(gè) 50mV 隔離式 AC 信號(hào)。通道 2 連接到輸出電壓,通道 1 連接到這個(gè)電阻器的另一側(cè)。環(huán)路增益由頻率分析儀系統(tǒng)通過(guò) Ch2/Ch1 計(jì)算。圖 33 顯示了測(cè)得的和 LTpowerCAD 計(jì)算得出的典型電流模式電源 LTC3851A 之環(huán)路波德圖。在關(guān)鍵的 1kHz 至 100kHz 頻率范圍內(nèi),兩條曲線吻合得非常好。
圖 32:測(cè)量電源環(huán)路增益的測(cè)試配置
圖 33:測(cè)得的和 LTpowerCAD 建模得到的電流模式降壓型轉(zhuǎn)換器之環(huán)路增益
其他導(dǎo)致不穩(wěn)定性的因素
工作條件:
如果在示波器上電源開(kāi)關(guān)或輸出電壓波形看起來(lái)不穩(wěn)定或有抖動(dòng),那么首先,用戶需要確保電源是在穩(wěn)態(tài)條件下工作的,沒(méi)有負(fù)載或輸入電壓瞬態(tài)。對(duì)于非常小或非常大的占空比應(yīng)用而言,如果進(jìn)入脈沖跳躍工作模式,就要檢查是否達(dá)到了最短接通時(shí)間或斷開(kāi)時(shí)間限制。對(duì)于需要外部同步信號(hào)的電源而言,要確保信號(hào)干凈并位于控制器數(shù)據(jù)表給定的線性范圍之內(nèi)。有時(shí)還有必要調(diào)整鎖相環(huán) (PLL) 濾波器網(wǎng)絡(luò)。
電流檢測(cè)信號(hào)和噪聲:
在電流模式電源中,為了最大限度地降低檢測(cè)電阻器的功率損耗,最大電流檢測(cè)電壓一般非常低。例如,LTC3851A 可能有 50mV 最大檢測(cè)電壓。PCB 噪聲有可能干擾電流檢測(cè)環(huán)路,并導(dǎo)致開(kāi)關(guān)表現(xiàn)不穩(wěn)定。為了通過(guò)調(diào)試以確定是否確實(shí)是環(huán)路補(bǔ)償問(wèn)題,可以在 ITH 引腳到 IC 地之間放置一個(gè)大型 0.1µF 電容器。如果有了這個(gè)電容器電源仍然不穩(wěn)定,那么下一步就是檢查設(shè)計(jì)方案。一般而言,電感器和電流檢測(cè)網(wǎng)絡(luò)應(yīng)該設(shè)計(jì)成,在 IC 電流檢測(cè)引腳上至少有 10mV 至 15mV 峰值至峰值 AC 電感器電流信號(hào)。另外,電流檢測(cè)走線可以用一對(duì)扭絞跨接線重新布設(shè),以檢查這樣是否能解決問(wèn)題。
對(duì)于 PCB 布局而言,有一些重要考慮因素 [6]。總之,通常需要用一對(duì)緊挨著布設(shè)、返回 SENSE+ 和 SENSE- 引腳的電流檢測(cè)走線實(shí)現(xiàn)開(kāi)爾文檢測(cè)。如果某個(gè) PCB 通孔用在 SENSE- 網(wǎng)中,那么要確保這個(gè)通孔不接觸到其他 VOUT 平面??缃?SENSE+ 和 SENSE- 的濾波器電容器應(yīng)該通過(guò)直接走線連接,放置在盡可能靠近 IC 引腳的地方。有時(shí)需要濾波器電阻器,而且這些電阻器也必須靠近 IC。
控制芯片組件放置與布局:
控制 IC 周圍組件的放置和布局也是至關(guān)重要的 [6]。如果可能,所有陶瓷去耦電容器都應(yīng)該靠近其引腳。尤其重要的是,ITH 引腳電容器 Cthp 要盡可能靠近 ITH 及 IC 信號(hào)地引腳??刂?IC 應(yīng)該從供電電源地 (PGND) 有一個(gè)單獨(dú)的信號(hào)地 (SGND)。開(kāi)關(guān)節(jié)點(diǎn) (例如 SW、BOOST、TG 和 BG) 應(yīng)該遠(yuǎn)離敏感的小信號(hào)節(jié)點(diǎn) (例如電流檢測(cè)、反饋和 ITH 補(bǔ)償走線)。
總結(jié)
對(duì)于開(kāi)關(guān)模式電源而言,人們常常認(rèn)為環(huán)路補(bǔ)償設(shè)計(jì)是一項(xiàng)富有挑戰(zhàn)性的任務(wù)。對(duì)于具快速瞬態(tài)要求的應(yīng)用而言,設(shè)計(jì)具大帶寬和充足穩(wěn)定性裕度的電源是非常重要的。這通常是一個(gè)非常耗時(shí)的過(guò)程。本文講述了一些關(guān)鍵概念,以幫助系統(tǒng)工程師了解這項(xiàng)任務(wù),使用 LTpowerCAD 設(shè)計(jì)工具可將電源環(huán)路設(shè)計(jì)和優(yōu)化變得簡(jiǎn)單得多。
推薦閱讀:
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來(lái)電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號(hào)和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識(shí)別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開(kāi)”超級(jí)電容的“外衣”,看看超級(jí)電容“超級(jí)”在哪兒
- DigiKey 誠(chéng)邀各位參會(huì)者蒞臨SPS 2024?展會(huì)參觀交流,體驗(yàn)最新自動(dòng)化產(chǎn)品
- 提前圍觀第104屆中國(guó)電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池
歐勝
耦合技術(shù)
排電阻
排母連接器
排針連接器
片狀電感
偏光片
偏轉(zhuǎn)線圈
頻率測(cè)量?jī)x
頻率器件
頻譜測(cè)試儀
平板電腦