- 運用多相數(shù)字電源解決方案應對系統(tǒng)問題
- 利用數(shù)控多相交錯式DC/DC降壓系統(tǒng)
- 使用傳統(tǒng)模擬控制器來實施
所面臨的挑戰(zhàn)
當前的處理器、圖像及存儲系統(tǒng)均使用多相電源解決方案。這些多相解決方案可提供一個極高開關(guān)頻率轉(zhuǎn)換器的響應及調(diào)節(jié)性能,同時以一個更加適度的頻率上單獨地進行開關(guān)。對單通道降壓轉(zhuǎn)換器而言,它們還可以提供比實際更高的輸出電流。多相電源的優(yōu)勢來自于相位交錯。通過以統(tǒng)一的時間間隔進行相位交錯(例如:在一款三相交錯轉(zhuǎn)換器中以120°的時間間隔進行交錯),其本身單個相位固有的輸出紋波被其他相位降至平均水平,從而總體輸出紋波就被降低了。這樣使用更低的脈寬調(diào)制開關(guān)頻率,就可以實現(xiàn)給定輸出紋波設(shè)計的目標,與此同時通過降低開關(guān)損耗提高了效率。
管理多相電源系統(tǒng)存在一些其自身特有的問題,包括輕負載效率和系統(tǒng)冗余的切相(phaseshedding),以及系統(tǒng)壽命的相位電流平衡。在傳統(tǒng)模擬電源中實施這些功能會比較困難,然而使用一個數(shù)字控制器則可以很輕松地完成這些任務。在該案例研究中,引入了一款數(shù)字電源解決方案,其具有多相同步降壓轉(zhuǎn)換器的優(yōu)點,同時可以運用數(shù)字方法關(guān)閉電壓控制環(huán)路,并且對不同負載和散熱條件下的相位進行管理,以獲得最佳電源性能。
解決方案
這種系統(tǒng)由多達6個交錯式同步降壓轉(zhuǎn)換器組成,這些轉(zhuǎn)換器均由一個單微處理器控制,如圖1所示。
圖1數(shù)控多相交錯式同步降壓
TI推出的32位TMS320F2806數(shù)字信號控制器(DSC)運行在100MHz頻率下,并且以電源應用為目標。在本例中,其在軟件中實施電壓模式控制,該軟件使用一個在PWM開關(guān)頻率上進行采樣的單通道2極點2零點數(shù)字補償器。隨后產(chǎn)生的占空比值將被傳給每一個降壓相(所有為實現(xiàn)相位平衡所作的占空比調(diào)節(jié)除外)。通過使用片上12位模數(shù)轉(zhuǎn)換器(ADC)獲得系統(tǒng)輸出電壓反饋。MOSFET溫度在整個ADC中均為可用,以實現(xiàn)監(jiān)控的目的,并且片上內(nèi)部集成電路(I2C)端口提供了對PMBus™通信的支持。針對同步降壓應用專門設(shè)計了一款UCD7230柵極驅(qū)動器,從而提供了采用TITrueDrive™輸出架構(gòu)的雙通道4-AMOSFET驅(qū)動器、周期性電流限制以及一個內(nèi)置低失調(diào)、高增益、差分電流傳感放大器。
切相和增相
切相提供了一種提高電源效率和可靠性的方法。在輕負載條件下,動態(tài)地減少運行相位的數(shù)量通常會帶來效率的提高。當負載需求增加時,一個切相可以被重新激活。類似地,通過重新平衡各剩余相位之間的交錯,切除一個失效的相位或者一個運行在邊界狀態(tài)以外的相位,有助于維持系統(tǒng)的性能。在那些需要極高可靠性的應用中,一個備用相位可以被帶上線以取代失效的相位,也就是N+1冗余設(shè)計。不考慮切除一個相位的原因,剩余相位(或者在N+1冗余設(shè)計中增加相位)的交錯角應該重新調(diào)整,以維持最佳性能。例如,從一個三相120°交錯式轉(zhuǎn)換器中切除一個相位就應該將兩個相位分離隔開180°。
TMS320F2806控制器的PWM元件均支持軟件同步及相位控制。每一個PWM輸出均具有一個相位同步寄存器,它將其計數(shù)值與首個PWM輸出的計數(shù)值發(fā)生偏移。這就允許所有交錯式降壓相位的相位角不僅僅可以在系統(tǒng)初始化期間被靜態(tài)地配置,而且還可以在系統(tǒng)運行期間被動態(tài)地重新調(diào)整。
[page]
圖2a顯示了一款120°交錯式(條件:10V輸入、2V輸出、3A負載及300kHzPWM開關(guān))PWM結(jié)構(gòu)的三相交錯式降壓轉(zhuǎn)換器的示波器屏幕采集圖。示波器通道1至3顯示的是單個相位電壓,而通道4顯示的是交錯式輸出電壓(所有示波器通道均為AC耦合)。通過所有運行中的三個相位,可以得出該輸出紋波為4.9mV(輸出電壓的0.25%)。在沒有調(diào)整兩個剩余相位(見圖2b)角的情況下,切除相位2會引起輸出紋波增加86%,即為9.1mV。為了獲得180°交錯(見圖2c),對兩個剩余相位進行軟件調(diào)整以后,該紋波減少至7.9mV。在仍然比初始值大的同時(因為一個兩相位系統(tǒng)無法獲得如一個三相系統(tǒng)一樣的低紋波),其比未被調(diào)整的剩余相位角提高了13%。
圖2a三相交錯式同步降壓輸出
圖2b在120°交錯時,切除相位2,保留相位1和相位3
圖2c對相位1和相位3進行調(diào)整以實現(xiàn)180°交錯
相位電流平衡
為了最佳化電源組件可靠性和使用壽命,使多相系統(tǒng)中的每一個相位都等量地分擔電源負荷是值得的。由于電源開關(guān)和電感的組件間的不同,以及電路板布局和散熱的非對稱性,因此流經(jīng)相位的電流是不一樣的。基本平衡方法包括測量相位電流,以及對每一個相位要求的PWM占空比進行單獨地調(diào)節(jié),以對電流進行平衡。電流非均衡動態(tài)十分緩慢,因而平衡環(huán)路的采樣率可以較低,差不多可以是幾十分之幾秒,甚至是幾秒。因此,微處理器上額外的計算負擔可以被忽略不計。為了減少傳感器噪聲的影響,對平衡環(huán)路速率電流讀取進行過采樣,并隨著時間的變化平均每一個相位的電流測量。簡單低增益完整行為“僅”控制算法通常被用于關(guān)閉平衡環(huán)路。在使用平均相位電流作為參考的每一個環(huán)路反復過程中,可以在每一個相位上執(zhí)行平衡。另一種方法是,有時只有將在那個時刻測量出的最高和最低電流相位彼此平衡,才能達到相位電流平衡。無論使用哪一種方法,所有相位電流最終都將匯聚到相同值上。
PWM精度是進行相位電流平衡時通常會碰到的一個問題。將一個10V輸入看作是由一個100MHzPWM時鐘的300kHzPWM驅(qū)動的2V輸出同步降壓轉(zhuǎn)換器。該降壓輸出上的PWM精度將會是30mV,或者等同于2V輸出的1.5%。一般而言,相比達到相位平衡和避免平衡控制環(huán)路極限循環(huán)期(limitcycling)所需要的較好占空比調(diào)節(jié),這樣的粒度將會大一個甚至是兩個數(shù)量級。F2806控制器為這一問題提供了一種解決方案,并且別具一格地增強了PWM模塊的高精度。這種高精度PWM提供了~150ps的邊緣定位。這就相當于為上述降壓實例提供0.45mV的輸出精度,或者0.02%的2V輸出。這種解決方案可提供高精度以及較好的相位電流平衡功能。
結(jié)論
本文描述了一款數(shù)控多相交錯式DC/DC降壓系統(tǒng),其可實現(xiàn)電壓模式調(diào)節(jié)控制,并具有切相及增相和多相電流平衡的特點。使用傳統(tǒng)模擬控制器來實施這些特性將會十分具有挑戰(zhàn)性,而使用一款基于微處理器的數(shù)字控制器便可以輕松地完成這些任務。F2806數(shù)字信號控制器與UCD7230柵極驅(qū)動及電流傳感放大器的完美結(jié)合提供了一款完整的信號控制解決方案,并具有單機運行的片上閃存、同步高精度PWM模塊、測量反饋信號的ADC以及PMBus通信功能。