圖1:數(shù)字三相BLDC電機控制通常使用三對MOSFET,每對MOSFET為電機的一個繞組提供交流電壓。 (圖像:德州儀器)
如何使用高度集成的柵極驅(qū)動器實現(xiàn)緊湊型電機控制系統(tǒng)的設(shè)計
發(fā)布時間:2020-12-23 責任編輯:lina
【導讀】采用鋰離子電池供電的高功率密度,高效率,三相無刷直流(BLDC)電機可實現(xiàn)無繩電動工具,真空吸塵器和電動自行車的開發(fā)。然而,為了節(jié)省更緊湊的機電設(shè)備的空間,設(shè)計人員面臨著進一步縮小其電機控制電子設(shè)備的壓力。
采用鋰離子電池供電的高功率密度,高效率,三相無刷直流(BLDC)電機可實現(xiàn)無繩電動工具,真空吸塵器和電動自行車的開發(fā)。然而,為了節(jié)省更緊湊的機電設(shè)備的空間,設(shè)計人員面臨著進一步縮小其電機控制電子設(shè)備的壓力。
這不是一項簡單的任務(wù)。除了將驅(qū)動器組件擠壓到狹小空間的明顯困難之外,將所有部件推得更緊密地增加了熱管理,當然還有電磁干擾(EMI)問題。
電機控制電路設(shè)計人員可以做出更纖薄的設(shè)計通過轉(zhuǎn)向新一代高度集成的柵極驅(qū)動器,這是電機控制系統(tǒng)中關(guān)鍵的元件。
本文將介紹BLDC電機在引入合適的柵極驅(qū)動器之前的操作以及如何使用它們來克服緊湊型電機控制系統(tǒng)的設(shè)計挑戰(zhàn)。
構(gòu)建更好的電動機
由于能源效率和節(jié)省空間的雙重商業(yè)壓力,電動機設(shè)計迅速發(fā)展。數(shù)字控制的BLDC電機代表了這一演變的一個方面。電機的普及是由于使用電子換向,與傳統(tǒng)(電刷換向)直流電機相比,效率更高,對于以相同速度和負載運行的電機,效率提高了20%到30%。
這種改進使BLDC電機能夠在給定的功率輸出下更小,更輕,更安靜。 BLDC電機的其他優(yōu)點包括出色的速度與轉(zhuǎn)矩特性,更動態(tài)的響應(yīng),無噪音運行以及更高的速度范圍。工程師們還推動設(shè)計在更高的電壓和頻率下運行,因為這樣可以使緊湊型電動機完成與更大的傳統(tǒng)電機相同的工作。
BLDC電機成功的關(guān)鍵是電子開關(guān)模式電源和電機控制電路產(chǎn)生一個三相輸入,進而產(chǎn)生旋轉(zhuǎn)磁場,拉動電機的轉(zhuǎn)子。由于磁場和轉(zhuǎn)子以相同的頻率旋轉(zhuǎn),電機被歸類為“同步”?;魻栃?yīng)傳感器傳遞定子和轉(zhuǎn)子的相對位置,使控制器可以在適當?shù)臅r刻切換磁場。 “無傳感器”技術(shù)可監(jiān)測反電動勢(EMF)以確定定子和轉(zhuǎn)子位置。
順序向三相BLDC電機施加電流的常見配置包括三對功率MOSFET安排在橋梁結(jié)構(gòu)中。每對充當逆變器,將來自電源的直流電壓轉(zhuǎn)換為驅(qū)動電機繞組所需的交流電壓(圖1)。在高壓應(yīng)用中,通常使用絕緣柵雙極晶體管(IGBT)代替MOSFET。
圖1:數(shù)字三相BLDC電機控制通常使用三對MOSFET,每對MOSFET為電機的一個繞組提供交流電壓。 (圖像:德州儀器)
晶體管對包括一個低端器件(源極接地)和一個高端器件(源極在地和高壓電源軌之間浮動)。
在典型的布置中,使用脈沖寬度調(diào)制(PWM)來控制MOSFET柵極,其有效地將輸入DC電壓轉(zhuǎn)換為調(diào)制的驅(qū)動電壓。應(yīng)該使用比預期的電動機轉(zhuǎn)速高至少一個數(shù)量級的PWM頻率。每對MOSFET控制電機一相的磁場。有關(guān)驅(qū)動BLDC的更多信息,請參閱庫文章“如何為無刷直流電機供電和控制。”
電動機控制系統(tǒng)
完整的電機控制系統(tǒng)包括電源,主機微控制器,柵極驅(qū)動器和半橋拓撲結(jié)構(gòu)的MOSFET(圖2)。微控制器設(shè)置PWM占空比并負責開環(huán)控制。在低壓設(shè)計中,柵極驅(qū)動器和MOSFET橋有時集成在一個單元中。然而,對于高功率單元,柵極驅(qū)動器和MOSFET橋接器是分開的,以便于熱管理,使得不同的工藝技術(shù)可用于柵極驅(qū)動器和橋接器,并限度地降低EMI。
圖2:基于TI MSP 430微控制器的BLDC電動機控制原理圖。 (圖像:德州儀器)
MOSFET橋可以由分立器件或集成芯片組成。將低端和高端MOSFET集成在同一封裝中的關(guān)鍵優(yōu)勢在于,即使MOSFET具有不同的功耗,它也允許頂部和底部MOSFET之間的自然熱均衡。無論是集成還是離散,每個晶體管對都需要一個獨立的柵極驅(qū)動器來控制開關(guān)時序和驅(qū)動電流。
也可以使用分立元件設(shè)計柵極驅(qū)動器電路。這種方法的優(yōu)勢在于它允許工程師調(diào)整柵極驅(qū)動器以匹配MOSFET特性并優(yōu)化性能。缺點是需要高水平的電機設(shè)計經(jīng)驗和適應(yīng)分立解決方案所需的空間。
模塊化電機控制解決方案提供了另一種選擇,市場上有各種各樣的集成柵極驅(qū)動器。更好的模塊化門驅(qū)動解決方案包括:
高集成度以限度地減少器件所需的空間
高驅(qū)動電流可降低開關(guān)損耗并提高效率
高柵極驅(qū)動電壓,確保MOSFET導通內(nèi)阻(“RDS(ON)”)
高電流過流,過壓和過溫保護,可在惡劣的條件下實現(xiàn)可靠的系統(tǒng)運行
德州儀器(TI)的DRV8323x系列三相柵極驅(qū)動器可降低系統(tǒng)元件數(shù)量,降低成本和復雜性,同時滿足高效BLDC電機的需求。
DRV8323x系列有三種型號。每個都集成了三個獨立的柵極驅(qū)動器,能夠驅(qū)動高側(cè)和低側(cè)MOSFET對。柵極驅(qū)動器包括一個電荷泵,用于為高端晶體管產(chǎn)生高柵極電壓(具有高達100%的占空比支持),以及一個用于為低端晶體管供電的線性穩(wěn)壓器。
TI柵極驅(qū)動器包括讀出放大器,如果需要,還可以配置為放大低端MOSFET上的電壓。這些器件可提供高達1安培的電流,具有2安培吸收峰值柵極驅(qū)動電流,并可通過單電源供電,輸入電源范圍為6至60伏。
DRV8323R版本,適用于例如,集成三個雙向電流檢測放大器,使用低側(cè)分流電阻監(jiān)控每個MOSFET橋的電流水平??赏ㄟ^SPI或硬件接口調(diào)整電流檢測放大器的增益設(shè)置。微控制器連接到DRV8323R的EN_GATE,因此它可以啟用或禁用柵極驅(qū)動輸出。
DRV8323R器件還集成了一個600毫安(mA)降壓穩(wěn)壓器,可用于為外部控制器供電。該穩(wěn)壓器可以使用柵極驅(qū)動器電源或單獨的一個(圖3)。
圖3:高度集成的柵極驅(qū)動器,如TI的DRV8323R在節(jié)省空間的同時減少系統(tǒng)組件數(shù)量,成本和復雜性。 (圖像:德州儀器)
柵極驅(qū)動器具有多種保護功能,包括電源欠壓鎖定,電荷泵欠壓鎖定,過流監(jiān)控,柵極驅(qū)動器短路檢測和過溫關(guān)斷。
每個DRV832x都封裝在尺寸僅為5 x 5到7 x 7毫米(mm)的芯片中(取決于選項)。這些產(chǎn)品可以節(jié)省超過24個分立元件所需的空間。
使用集成柵極驅(qū)動器進行設(shè)計
為了使設(shè)計人員能夠正常運行,TI提供了參考設(shè)計TIDA-01485。這是一款99%效率,1千瓦(kW)功率級參考設(shè)計,適用于三相36伏BLDC電機,適用于使用十節(jié)鋰離子電池供電的電動工具等應(yīng)用。
參考設(shè)計展示了如何使用高度集成的柵極驅(qū)動器(如DRV8323R),通過在此功率級別形成電機控制電路之一的基礎(chǔ),節(jié)省電機控制設(shè)計的空間。參考設(shè)計實現(xiàn)了基于傳感器的控制。 (參見圖書館文章“為什么以及如何正弦控制三相無刷直流電機”。)
參考設(shè)計的主要元件是MSP430F5132微控制器,DRV8323R柵極驅(qū)動器和三個CSD88599 60伏特半橋MOSFET功率模塊(圖4)。
圖4:TIDA-01485是1 kW,99%效率的功率級參考設(shè)計用于三相36伏BLDC電機,可由十節(jié)鋰離子電池供電。 (圖像:德州儀器)
雖然柵極驅(qū)動器是高度集成的模塊化解決方案,消除了分立設(shè)計的許多復雜性,但仍需要一些設(shè)計工作來創(chuàng)建完全工作的系統(tǒng)。參考設(shè)計通過展示一個全面的解決方案幫助設(shè)計人員繪制原型。
例如,柵極驅(qū)動器需要多個去耦電容才能正常工作。在參考設(shè)計中,1微法(μF)電容(C13)將低端MOSFET的驅(qū)動電壓(DVDD)去耦,該電壓源自DRV8323R的內(nèi)部線性穩(wěn)壓器(圖5)。該電容必須盡可能靠近柵極驅(qū)動器放置,以盡量減小環(huán)路阻抗。需要一個值為4.7μF(C10)的第二個去耦電容來將直流電源輸入(PVDD)與36伏電池去耦。
圖5:DRV8323R柵極驅(qū)動器的應(yīng)用電路。應(yīng)盡量減少走線長度以限制EMI。 (圖片:德州儀器)
二極管D6有助于在短路條件下電池電壓下降時隔離柵極驅(qū)動器電源。該二極管非常重要,因為它的存在使PVDD去耦電容(C10)能夠在小持續(xù)時間下降時保持輸入電壓。
保持電壓可防止柵極驅(qū)動器進入不希望的欠壓鎖定狀態(tài)。 C11和C12是使電荷泵工作的關(guān)鍵器件,也應(yīng)盡可能靠近柵極驅(qū)動器。
通常,良好的設(shè)計做法是盡量減小高端和低端的環(huán)路長度側(cè)柵極驅(qū)動器,主要用于降低EMI。高端環(huán)路從DRV8323 GH_X到功率MOSFET,并通過SH_X返回。低側(cè)環(huán)路從DRV8323 GL_X到功率MOSFET,并通過GND返回。
切換時序的重要性
MOSFET的選擇是性能和效率的關(guān)鍵BLDC電機由于沒有兩個MOSFET系列完全相同,因此每種選擇都取決于所需的開關(guān)時間。即使是稍微錯誤的定時也會導致問題,包括低效率,高EMI和可能的電機故障。
例如,不正確的定時會導致直通,導致低壓和高壓的情況側(cè)面MOSFET偶然導通,導致災難性的短路。其他時序問題包括由可能損壞MOSFET的寄生電容觸發(fā)的瞬變。外部短路,焊接橋或MOSFET在特定狀態(tài)下掛起也會引發(fā)問題。
TI將其DRV8323標記為“智能”柵極驅(qū)動器,因為它為設(shè)計人員提供了對時序和反饋的控制以消除這些問題。例如,驅(qū)動器包括一個內(nèi)部狀態(tài)機,用于防止柵極驅(qū)動器中的短路事件,控制MOSFET橋死區(qū)時間(IDEAD),并防止外部功率MOSFET的寄生導通。
DRV8323柵極驅(qū)動器還包括用于高側(cè)和低側(cè)驅(qū)動器的可調(diào)節(jié)推挽式拓撲結(jié)構(gòu),可實現(xiàn)外部MOSFET橋的強大上拉和下拉,以避免雜散電容問題??烧{(diào)柵極驅(qū)動器支持動態(tài)柵極驅(qū)動電流(IDRIVE)和持續(xù)時間(tDRIVE)變化(不需要限流柵極驅(qū)動電阻)來微調(diào)系統(tǒng)操作(圖6)。
圖6:用于三相BLDC電機的一個MOSFET橋中的高側(cè)(VGHx)和低側(cè)晶體管(VGLx)的電壓和電流輸入。 IDRIVE和tDRIVE對于正確的電機運行和效率非常重要; IHOLD用于將柵極維持在所需狀態(tài),ISTRONG防止低端晶體管的柵極 - 源極電容引起導通。 (圖片:德州儀器)
首先應(yīng)根據(jù)外部MOSFET的特性選擇IDRIVE和tDRIVE,例如柵極 - 漏極電荷,以及所需的上升和下降時間。例如,如果IDRIVE太低,MOSFET的上升和下降時間將會更長,從而導致高開關(guān)損耗。上升和下降時間也決定(在一定程度上)每個MOSFET的續(xù)流二極管的恢復尖峰的能量和持續(xù)時間,這可能進一步消耗效率。
當改變柵極驅(qū)動器的狀態(tài)時, IDRIVE應(yīng)用于tDRIVE周期,該周期必須足夠長,以使柵極電容完全充電或放電。根據(jù)經(jīng)驗,選擇tDRIVE使其大約是MOSFET開關(guān)上升和下降時間的兩倍。請注意,tDRIVE不會增加PWM時間,如果在有效期間收到PWM命令,則會終止。
在tDRIVE周期后,使用固定保持電流(IHOLD)將門保持在期望的狀態(tài)(拉起或拉下)。在高端導通期間,低端MOSFET柵極受到強下拉,以防止晶體管的柵極 - 源極電容導致導通。
固定的tDRIVE持續(xù)時間確保在故障條件下,例如MOSFET柵極短路,峰值電流時間受到限制。這限制了傳輸?shù)哪芰坎⒎乐箵p壞柵極驅(qū)動引腳和晶體管。
結(jié)論
模塊化電機驅(qū)動器通過消除數(shù)十個分立元件節(jié)省空間并增強新一代的優(yōu)勢緊湊型,數(shù)字控制,高功率密度BLDC電機。這些“智能”柵極驅(qū)動器還包括簡化設(shè)置功率MOSFET開關(guān)時序的棘手開發(fā)過程的技術(shù),同時減輕寄生電容的影響并降低EMI。
仍然需要注意確保外設(shè)精心選擇功率MOSFET和去耦電容等電路。但是,如圖所示,主要的電機驅(qū)動器供應(yīng)商提供參考設(shè)計,開發(fā)人員可以根據(jù)這些設(shè)計原型。
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進行侵刪。
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識別和認證的新型指紋傳感器IC
- Vishay推出負載電壓達100 V的業(yè)內(nèi)先進的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開”超級電容的“外衣”,看看超級電容“超級”在哪兒
- DigiKey 誠邀各位參會者蒞臨SPS 2024?展會參觀交流,體驗最新自動化產(chǎn)品
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達控制
麥克風
脈沖變壓器
鉚接設(shè)備
夢想電子
模擬鎖相環(huán)
耐壓測試儀
逆變器
逆導可控硅
鎳鎘電池
鎳氫電池
紐扣電池
歐勝
耦合技術(shù)
排電阻
排母連接器
排針連接器
片狀電感
偏光片
偏轉(zhuǎn)線圈
頻率測量儀
頻率器件
頻譜測試儀
平板電腦