如何設(shè)計(jì)典型的模擬前端電路
發(fā)布時(shí)間:2020-11-24 責(zé)任編輯:lina
【導(dǎo)讀】模擬前端處理的對(duì)象是信號(hào)源給出的模擬信號(hào),其主要功能通常包括信號(hào)放大、濾波、接收ADC和/或發(fā)送路徑數(shù)據(jù)轉(zhuǎn)換(DAC)等,對(duì)于特定應(yīng)用領(lǐng)域可能還包括頻率變換或者調(diào)制解調(diào)等其他功能。而放大器和ADC是此類應(yīng)用中最重要的兩個(gè)模塊,特別是常見(jiàn)的傳感器信號(hào)處理模擬前端。
模擬前端處理的對(duì)象是信號(hào)源給出的模擬信號(hào),其主要功能通常包括信號(hào)放大、濾波、接收ADC和/或發(fā)送路徑數(shù)據(jù)轉(zhuǎn)換(DAC)等,對(duì)于特定應(yīng)用領(lǐng)域可能還包括頻率變換或者調(diào)制解調(diào)等其他功能。而放大器和ADC是此類應(yīng)用中最重要的兩個(gè)模塊,特別是常見(jiàn)的傳感器信號(hào)處理模擬前端。
那么典型的模擬前端電路應(yīng)當(dāng)如何設(shè)計(jì)呢?本文從高性能模擬技術(shù)提供商ADI公司的一款典型電磁流量計(jì)案例為例進(jìn)行應(yīng)用分析,該應(yīng)用中就涉及到最典型的傳感器信號(hào)采集處理,對(duì)常見(jiàn)的模擬前端設(shè)計(jì)具有參考意義。
過(guò)采樣法簡(jiǎn)化模擬前端架構(gòu)
電磁流量計(jì)是目前使用最為廣泛的流量技術(shù)之一,主要用于液體流量測(cè)量,重點(diǎn)是自來(lái)水與污水處理系統(tǒng)。電磁流量計(jì)的工作原理基于法拉第電磁感應(yīng)定律——當(dāng)導(dǎo)電流體流經(jīng)傳感器的磁場(chǎng)時(shí),一對(duì)電極之間就會(huì)產(chǎn)生與體積流量成正比的電動(dòng)勢(shì),因而通過(guò)測(cè)量該電勢(shì)實(shí)現(xiàn)對(duì)流量的判斷,其主要的發(fā)展趨勢(shì)是減少PCB面積和提升性能。
針對(duì)其模擬前端,傳統(tǒng)方法大致上是模擬式——具有高輸入阻抗和高輸入共模抑制性能的前置放大器用來(lái)應(yīng)對(duì)傳感器漏電流效應(yīng),然后是三階或四階模擬帶通濾波器和采樣保持級(jí),最后是模數(shù)轉(zhuǎn)換。如下圖所示,傳感器輸出信號(hào)首先經(jīng)由儀表放大器放大。必須盡量放大目標(biāo)信號(hào),同時(shí)要避免不需要的直流共模電壓引起放大器輸出飽和。這通常會(huì)將第一級(jí)儀表放大器的增益限制在最多10 倍。帶通濾波器級(jí)進(jìn)一步消除直流影響,并再次放大信號(hào),然后進(jìn)入采樣保持電路——正是這個(gè)差值信號(hào)代表流速——隨后送至模數(shù)轉(zhuǎn)換器。
傳統(tǒng)模擬前端方法
過(guò)采樣方法大大簡(jiǎn)化了模擬前端設(shè)計(jì)。模擬帶通濾波器和采樣保持電路不再需要。電路中的前置放大器僅有一級(jí)儀表放大器——在我們的例子中是AD8220 JFET 輸入級(jí)軌到軌輸出儀表放大器,它可以直接連接到高速Σ-Δ 型轉(zhuǎn)換器。
采用AD8220 和AD717x-x 的過(guò)采樣架構(gòu)模擬前端
影響模擬前端設(shè)計(jì)的幾大關(guān)鍵因素解析
Ø 放大器
第一級(jí)放大器有幾項(xiàng)關(guān)健要求。一個(gè)要求是共模抑制比 (CMRR)。在電磁流量計(jì)應(yīng)用中,電極的金屬材料與電解質(zhì)液體接觸。液體電解質(zhì)與電極之間的摩擦?xí)a(chǎn)生較高頻率的交流共模電壓。雖然幅度通常很小,但交流共模表現(xiàn)為完全隨機(jī)的噪聲,更難抑制。這就要求前置放大器不僅具有良好的直流共模抑制比,而且要有出色的較高頻率共模抑制比。AD8220 放大器在直流到5 千赫茲范圍內(nèi)具有出色的共模抑制比。對(duì)于AD8220 B 級(jí),直流到60 赫茲范圍的最小共模抑制比為100 dB,5 千赫茲以下為90 dB,能夠很好地將共模電壓和噪聲抑制到微伏水平。當(dāng)共模抑制比為120 dB 時(shí),0.1 伏峰峰值降低到0.1 微伏峰峰值。
前置放大器的共模抑制
前置放大器級(jí)的低漏電流和高輸入阻抗是又一重要參數(shù)。放大器的高輸入阻抗可防止傳感器輸出過(guò)載,避免信號(hào)幅度減小。放大器的漏電流應(yīng)足夠低,這樣當(dāng)它流經(jīng)傳感器時(shí),不會(huì)成為一個(gè)顯著的誤差源。AD8220 的最大輸入偏置電流為10 pA,輸入阻抗為1013Ω,因此它能支持電磁流量傳感器的廣泛輸出特性。最后,0.1 赫茲至10 赫茲范圍的1/f 噪聲設(shè)置應(yīng)用的噪底。當(dāng)增益配置為10 時(shí),AD8220 折合到輸入端的電壓噪聲約為 0.94 μV p-p,它能分辨6 毫米/秒的瞬時(shí)流速和小于1 毫米/秒的累計(jì)流速。
Ø ADC
過(guò)采樣方法既帶來(lái)了挑戰(zhàn),也對(duì)ADC 模塊提出了更高的性能要求。由于沒(méi)有后級(jí)模擬濾波器有源增益級(jí),所以僅有一小部分的ADC 輸入范圍獲得使用。過(guò)采樣和平均本身不等于性能的顯著提高,因?yàn)楦鱾鞲衅髦芷谛枰耆⑾聛?lái)才能用于流量計(jì)算。此外,需要從這些有限的數(shù)據(jù)點(diǎn)獲得足夠多的模數(shù)轉(zhuǎn)換樣本,從而在固件處理過(guò)程中消除意外毛刺。
模擬前端和ADC 的噪聲預(yù)算
過(guò)采樣架構(gòu)一般要求ADC 數(shù)據(jù)速率大于20 kSPS,越快越好。 這與實(shí)際流量測(cè)量沒(méi)有明確關(guān)系。由于不存在模擬帶通濾波 器,ADC 輸入端會(huì)直接看到傳感器原始輸出。這種情況下, 傳感器的上升沿未經(jīng)濾波,因此ADC 在上升沿和下降沿期間 須具有足夠高的分辨率,以便足夠準(zhǔn)確地捕捉這些邊沿。
流量計(jì)的精度本身可通過(guò)瞬時(shí)流量測(cè)量或累計(jì)流量測(cè)量來(lái)確定。流量計(jì)標(biāo)準(zhǔn)采用累計(jì)流量技術(shù) — 測(cè)量長(zhǎng)時(shí)間(比如30 或60 秒)內(nèi)某一水量的平均流量。通過(guò)這種測(cè)量(而非瞬時(shí) 流量測(cè)量)可確定系統(tǒng)精度為±0.2%。瞬時(shí)流量適合需要實(shí)時(shí)流速的應(yīng)用場(chǎng)合。它對(duì)電子器件的精度要求要高得多。理論上,為了分辨5 毫米/秒的瞬時(shí)流量,ADC 需要在一個(gè)激勵(lì)周期(約600樣本的后置FIR濾波器)內(nèi)實(shí)現(xiàn)20.7 位的峰值分辨率。這可通過(guò)模擬前端來(lái)實(shí)現(xiàn)。
我們的方案中采用的是ADI公司低噪聲、多路復(fù)用Σ-Δ型模數(shù)轉(zhuǎn)換器AD7172-2,該ADC提供低輸入噪聲和高采樣速度的完美組合,特別適合電磁流量應(yīng)用。采用2.5 V 外部基準(zhǔn)電壓源時(shí),AD7172-2 的典型噪聲低至0.47μV p-p。這意味著,最終流量結(jié)果的刷新速率可以達(dá)到50 SPS,而不需要增加外部放大級(jí)。
本文總結(jié):
本文僅提供了一個(gè)一般的應(yīng)用場(chǎng)景下的模擬前端設(shè)計(jì)參考思路,根據(jù)傳感器具體類型和待測(cè)電壓/電流幅度的不同,不同的模擬前端電路設(shè)計(jì)會(huì)面臨各種的挑戰(zhàn),例如:信號(hào)可能需要放大或衰減,從而匹配模數(shù)轉(zhuǎn)換器(ADC)的滿量程輸入范圍,以供進(jìn)一步的數(shù)字處理和反饋控制;而在典型的數(shù)據(jù)采集系統(tǒng)中,需要衰減的信號(hào)與需要放大的信號(hào)會(huì)分別通過(guò)不同的信號(hào)路徑進(jìn)行處理,這些不同路徑放大器往往不能提供許多工業(yè)和儀器儀表應(yīng)用所需的高直流精度和溫度穩(wěn)定性,同時(shí)也會(huì)導(dǎo)致系統(tǒng)設(shè)計(jì)更為復(fù)雜,從而大量占用電路板空間。在具體的應(yīng)用中需要結(jié)合應(yīng)用場(chǎng)景的具體要求進(jìn)行電路調(diào)整和優(yōu)化。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 音頻放大器的 LLC 設(shè)計(jì)注意事項(xiàng)
- 服務(wù)器電源設(shè)計(jì)中的五大趨勢(shì)
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實(shí)現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個(gè)重要參數(shù)!
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計(jì)指南,拿下!
技術(shù)文章更多>>
- PLC 交流模塊的 TRIAC 輸出故障排除
- 解鎖AI設(shè)計(jì)潛能,ASO.ai如何革新模擬IC設(shè)計(jì)
- 汽車拋負(fù)載Load Dump
- 50%的年長(zhǎng)者可能會(huì)聽(tīng)障?!救贖的辦法在這里
- ADI 多協(xié)議工業(yè)以太網(wǎng)交換機(jī)
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
功率電阻
功率放大器
功率管
功率繼電器
功率器件
共模電感
固態(tài)盤
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開(kāi)關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國(guó)防航空
過(guò)流保護(hù)器
過(guò)熱保護(hù)
過(guò)壓保護(hù)