如何避免“接地錯(cuò)覺(jué)”?工程師該知道的
發(fā)布時(shí)間:2019-12-16 責(zé)任編輯:lina
【導(dǎo)讀】在以往的電路理論學(xué)習(xí)中,您可能了解了許多分析電路的技術(shù)。節(jié)點(diǎn)電壓分析和網(wǎng)孔分析就是其中兩種著名的類似技術(shù)。在節(jié)點(diǎn)電壓分析法中,首先需要選擇一個(gè)節(jié)點(diǎn),把它作為參考節(jié)點(diǎn)。這個(gè)節(jié)點(diǎn)通常被假設(shè)具有絕對(duì)零電位,我們通常稱其為“接地”節(jié)點(diǎn)。
在以往的電路理論學(xué)習(xí)中,您可能了解了許多分析電路的技術(shù)。節(jié)點(diǎn)電壓分析和網(wǎng)孔分析就是其中兩種著名的類似技術(shù)。在節(jié)點(diǎn)電壓分析法中,首先需要選擇一個(gè)節(jié)點(diǎn),把它作為參考節(jié)點(diǎn)。這個(gè)節(jié)點(diǎn)通常被假設(shè)具有絕對(duì)零電位,我們通常稱其為“接地”節(jié)點(diǎn)。
只要不關(guān)心電路與其它對(duì)象之間的電壓關(guān)系,一般不會(huì)發(fā)現(xiàn)這種假設(shè)的害處。將多個(gè)子電路共用的節(jié)點(diǎn)作為接地節(jié)點(diǎn),通常是從數(shù)學(xué)上簡(jiǎn)化電路分析的極佳選擇。
當(dāng)我們學(xué)習(xí)電子電路專業(yè)課程時(shí),通常會(huì)忘記許多電路分析技術(shù),例如疊加、戴維南等效、諾頓等效和網(wǎng)孔分析等,而主要關(guān)注一種技術(shù),即節(jié)點(diǎn)電壓分析(圖1)。
圖1:節(jié)點(diǎn)電壓分析通常簡(jiǎn)化了電子電路的分析。上圖左側(cè)是節(jié)點(diǎn)電壓分析示例,右側(cè)是同一電路的網(wǎng)孔分析示例。
作為一名學(xué)生和工程師,經(jīng)過(guò)多年的深入研究,您可能會(huì)忘記電子電路理論中的一些基本概念,此時(shí)正是致命的錯(cuò)誤觀念滲入我們思想的時(shí)候。
常見(jiàn)誤解
接地節(jié)點(diǎn)經(jīng)常被誤以為是所有電荷的物理入地點(diǎn)。這當(dāng)然不對(duì)。接地節(jié)點(diǎn)只是我們個(gè)人選擇的節(jié)點(diǎn)。除了通常是許多子電路的公共節(jié)點(diǎn)以外,它沒(méi)什么特殊之處。而作為一個(gè)公共節(jié)點(diǎn)不會(huì)增加任何特殊的物理屬性。接地節(jié)點(diǎn)上唯一存儲(chǔ)的電荷是一端接地的電容器的負(fù)極板電荷。所有其它電荷都在電路中循環(huán),并且永不停歇(圖2)。請(qǐng)記住,所有電流都在一個(gè)回路中流動(dòng),電荷會(huì)返回其源極。
圖2:電流電荷在回路中循環(huán),接地節(jié)點(diǎn)上唯一存儲(chǔ)的電荷(–Q)是接地電容器上的電荷。
接地節(jié)點(diǎn)是避免噪聲的安全港。這也不對(duì),大多數(shù)不同的噪聲電流都會(huì)通過(guò)接地節(jié)點(diǎn)(圖3)。但是,僅對(duì)設(shè)計(jì)良好的接地軌而言,導(dǎo)電軌的阻抗可忽略不計(jì),此時(shí)跨軌的噪聲電位差幾乎為零。
圖3:不同的信號(hào)電流和不同的噪聲電流通過(guò)接地節(jié)點(diǎn)。接地軌的低阻抗是確保導(dǎo)電軌中任何兩個(gè)物理點(diǎn)之間的電位差可以忽略的唯一保證,至少在直流電路分析中如此。
人們普遍認(rèn)為,將兩個(gè)相互影響的域的接地墊隔離,可以保護(hù)安靜域免受噪聲域的影響。這可能是RF工程師在不知情的情況下所犯的最嚴(yán)重錯(cuò)誤之一。在多種情況下,接地墊的分離可能會(huì)導(dǎo)致從噪聲域輸出到安靜域輸入的嚴(yán)重噪聲耦合。您可能會(huì)發(fā)現(xiàn)這有悖常理,但是當(dāng)你使用綁定線繪制完整的電路直至PCB層時(shí),這一點(diǎn)會(huì)變得清晰,如圖4所示。當(dāng)所有MOS體連接到專用接地墊時(shí),也會(huì)產(chǎn)生類似的影響。
圖4:當(dāng)上圖左側(cè)接地墊分離時(shí),從一個(gè)域到另一個(gè)域的傳輸信號(hào)會(huì)變得噪聲很大。其分析步驟以紫色圓圈標(biāo)記。另一方面,如右側(cè)圖所示,合并域后,信號(hào)得以安全地傳輸。但是,如果PSRR較差,安靜域可能會(huì)受影響。
在考慮功耗的數(shù)字電路設(shè)計(jì)中,浮動(dòng)輸出不僅與斷開(kāi)接地路徑有關(guān),而且還與斷開(kāi)電源路徑有關(guān)(圖5)。物理設(shè)計(jì)偏好通常傾向于切換接地路徑。這是因?yàn)樵谙嗤膶?dǎo)通電阻下,將使用面積比PMOS器件小的NMOS器件。
圖5:當(dāng)電源或地線關(guān)閉時(shí),不可避免地可能導(dǎo)致輸出電壓不確定。而此不確定的輸出電壓取決于存儲(chǔ)在負(fù)載電容器上的最后一個(gè)工作輸出狀態(tài)、電源與地之間的OFF電阻比,以及不同連接點(diǎn)的漏電流。
接地軌和電源軌似乎與時(shí)序收斂無(wú)關(guān)。時(shí)序收斂與不同的信元延遲和不同的信號(hào)邊沿有關(guān)。 當(dāng)接地軌具有相對(duì)較高的阻抗時(shí),在電源軌和接地軌之間會(huì)產(chǎn)生相當(dāng)大的IR壓降,這會(huì)降低有效電源電壓,從而增加CMOS單元的延遲。而且,即使電源軌上的平均IR壓降微不足道,開(kāi)關(guān)噪聲電流也會(huì)在接地軌上產(chǎn)生明顯的瞬態(tài)噪聲電壓。因此,如圖6所示,到達(dá)距信號(hào)源較遠(yuǎn)的門(mén)的信號(hào)沿可以及時(shí)有效地“移動(dòng)”[1]。時(shí)移取決于瞬態(tài)噪聲的大小和極性。對(duì)于高上升/下降時(shí)間信號(hào),這種影響變得更加明顯。
圖6:根據(jù)紫色圓圈所示的分析步驟,瞬態(tài)電源/接地電流曲線在接地端會(huì)產(chǎn)生相似的電壓曲線,這會(huì)影響信號(hào)沿的有效到達(dá)時(shí)間。大幅增加本地去耦電容器以吸收交流電流曲線,并降低電源/接地軌的阻抗,可以緩解該問(wèn)題。
接地墊是否需要分離?
這是一個(gè)棘手的問(wèn)題,需要詳細(xì)說(shuō)明。前述內(nèi)容可能會(huì)給人一種印象,即接地墊分離是一種不良的設(shè)計(jì)實(shí)踐,盡管在許多芯片中這可能是一種常見(jiàn)的做法。通常,設(shè)計(jì)具有低電阻和低電感的單個(gè)統(tǒng)一接地,要遠(yuǎn)遠(yuǎn)優(yōu)于設(shè)計(jì)多個(gè)接地軌。多個(gè)接地軌會(huì)造成一些麻煩,比如多個(gè)作用域之間復(fù)雜的回流電流路徑,以及載有高頻電流的大面積環(huán)路造成的磁耦合。
但是,在某些情況下,接地墊的分離不可避免。例如,假設(shè)有一個(gè)晶體振蕩器和一個(gè)帶噪聲的數(shù)字模塊,它們共享一個(gè)接地墊,如圖7所示。數(shù)字模塊從電源汲取噪聲電流,并通過(guò)接地軌和綁定線返回。因此,接地線上會(huì)出現(xiàn)明顯的電壓故障。由于該綁定線與晶體振蕩器的地線共用,噪聲電壓故障會(huì)加載到晶振內(nèi)部節(jié)點(diǎn)的晶體純正弦電壓上。
圖7:根據(jù)紫色圓圈中所示的分析步驟,噪聲塊會(huì)間接在接地線兩端產(chǎn)生噪聲電壓。由于晶體實(shí)際上是具有很好截止特性的帶通濾波器,因此在振蕩過(guò)程中,其每個(gè)端子上都存在純正弦電壓。但是,晶體振蕩器的內(nèi)部節(jié)點(diǎn)會(huì)感測(cè)到接地線兩端的純電壓和噪聲電壓的疊加。
在需要分離接地墊的情況下,請(qǐng)執(zhí)行以下操作:
盡可能在噪聲模塊周?chē)胖枚鄠€(gè)去耦電容器(圖8)。這會(huì)減少噪聲供電電流在芯片外部的傳輸,從而將模塊導(dǎo)電軌及其輸出上產(chǎn)生的噪聲電壓最小化。
最小化噪聲模塊與其它模塊塊之間的電氣交互作用,或僅減小傳遞的電流。為此,在噪聲域中使用具有相對(duì)較高輸出阻抗的驅(qū)動(dòng)器,在安靜域中使用具有高輸入阻抗緩沖器的驅(qū)動(dòng)器。
圖8:噪聲模塊端的去耦電容會(huì)吸收流經(jīng)電源和地的大部分AC電流成分。最小化從噪聲域到敏感域的傳輸電流,可確保最小化噪聲的傳輸。
接地節(jié)點(diǎn)只是一個(gè)為電路分析而定義的節(jié)點(diǎn)。所有電流仍在回路中傳輸,并不會(huì)在接地節(jié)點(diǎn)處截止。
要預(yù)測(cè)和解決接地相關(guān)的問(wèn)題,只需繪出帶所有物理連接的完整電路,而無(wú)需定義接地節(jié)點(diǎn),并將不同的電流回路和公共路徑可視化。
在決定統(tǒng)一或分離不同域的接地墊之前,仔細(xì)了解預(yù)期的增益和潛在影響。
圖9所示是一個(gè)習(xí)題。其左側(cè)顯示了一個(gè)具有有限漏極阻抗的簡(jiǎn)單NMOS電流源。那么,看到的電源電壓源低頻交流阻抗是多少?
圖9:接地節(jié)點(diǎn)定義是否會(huì)影響輸入阻抗值?
答案非常簡(jiǎn)單。物理上保持電路不變,但選擇NMOS漏極作為接地節(jié)點(diǎn),而不是NMOS源極,如圖9右側(cè)所示,那么阻抗會(huì)保持不變嗎?千萬(wàn)不要讓接地迷惑了您。
(來(lái)源:快資訊)
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 精準(zhǔn)監(jiān)測(cè)電離分?jǐn)?shù)與沉積通量,助力PVD/IPVD工藝與涂層質(zhì)量雙重提升
- ADC 總諧波失真
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點(diǎn)”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務(wù)平臺(tái)
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號(hào)
電路圖知識(shí)
電腦OA
電腦電源
電腦自動(dòng)斷電
電能表接線
電容觸控屏
電容器
電容器單位
電容器公式
電聲器件
電位器
電位器接法
電壓表
電壓傳感器
電壓互感器
電源變壓器