電磁流量計:設(shè)計考慮和解決方案
發(fā)布時間:2020-04-13 來源:Colm Slattery 和 Ke Li 責(zé)任編輯:wenwei
【導(dǎo)讀】"若不能度量,則無法管理。"這是工業(yè)領(lǐng)域的一句口頭禪,尤 其適合于流量測量。簡單說來,對流量監(jiān)測的需求越來越多, 常常還要求更高速度和精度的監(jiān)測。有幾個領(lǐng)域中,工業(yè)流量 測量很重要,比如生活廢棄物。隨著人們越來越關(guān)注環(huán)境保護(hù), 為使我們的世界更干凈衛(wèi)生、污染更少,廢棄物的處置和監(jiān)測 就變得非常重要。人類消耗著大量的水,隨著全球人口增長, 用水量會越來越大。流量計至關(guān)重要,既能監(jiān)測生活廢水,也 是污水處理廠過程控制系統(tǒng)不可或缺的一部分。
當(dāng)今有哪些工業(yè)領(lǐng)域使用流量計?
"若不能度量,則無法管理。"這是工業(yè)領(lǐng)域的一句口頭禪,尤 其適合于流量測量。簡單說來,對流量監(jiān)測的需求越來越多, 常常還要求更高速度和精度的監(jiān)測。有幾個領(lǐng)域中,工業(yè)流量 測量很重要,比如生活廢棄物。隨著人們越來越關(guān)注環(huán)境保護(hù), 為使我們的世界更干凈衛(wèi)生、污染更少,廢棄物的處置和監(jiān)測 就變得非常重要。人類消耗著大量的水,隨著全球人口增長, 用水量會越來越大。流量計至關(guān)重要,既能監(jiān)測生活廢水,也 是污水處理廠過程控制系統(tǒng)不可或缺的一部分。
圖1. 污水處理廠簡圖
流量計還被用于許多工業(yè)控制過程,包括化學(xué)/制藥、食品飲 料、紙漿造紙等。此類應(yīng)用常常需要在有大量固體存在的情況 下測量流量 — 大部分流量技術(shù)不能輕松勝任這一要求。
輸送計量領(lǐng)域處理兩方之間的產(chǎn)品轉(zhuǎn)移和支付,需要高端流量 計。實(shí)例之一是通過大型管道系統(tǒng)輸送油品。在這種應(yīng)用中, 流量測量精度隨時間的變化即便很微小,也可能導(dǎo)致某一方損 失或獲得重大利益。
電磁感應(yīng)技術(shù)為什么非常適合液體流量測量?
對于液體流量測量,電磁流量計技術(shù)有多種優(yōu)勢。它的傳感器 一般是連接到管道中,其直徑與管道直徑一致,因而測量時不 會干擾或限制介質(zhì)的流動。由于傳感器不是直接浸沒在液體 中,沒有活動部件,因此不存在磨損問題。
電磁方法測量的是體積流量,這意味著測量對流體密度、溫度、 壓力和粘度等參數(shù)的變化不敏感。一旦用水標(biāo)定電磁流量計, 就可以使用它來測量其他類型的導(dǎo)電流體,無需進(jìn)一步標(biāo)定。 這是其他類型流量計所不具備的一個重要優(yōu)勢。
電磁流量計特別適合測量固液兩相介質(zhì),例如泥漿等帶懸浮泥 土、固體顆粒、纖維或粘稠物的高導(dǎo)電率介質(zhì)。它可用于測量 污水、泥漿、礦漿、紙漿、化學(xué)纖維漿及其他介質(zhì)。這使得它 特別適合食品、制藥等行業(yè),利用它可測量玉米糖漿、果汁、 酒類、藥物、血漿及其他許多特殊介質(zhì)。
電磁流量計的工作原理是什么?
電磁流量計的工作原理基于法拉第電磁感應(yīng)定律。根據(jù)法拉第 定律,當(dāng)導(dǎo)電流體流經(jīng)傳感器的磁場時,一對電極之間就會產(chǎn) 生與體積流量成正比的電動勢,其方向與流向和磁場垂直。電 動勢幅度可表示為:
其中,E 為感生電勢,k 為常數(shù),B 為磁通密度,D 為測量管的內(nèi)徑,v 為測量管內(nèi)的流體在電極截面軸向上的平均速度。
圖2. 磁流量計工作原理
傳感器輸出范圍是多少?
傳感器提供差分輸出。其靈敏度典型值為150 μv/(mps)至200 μv/ (mps)。由于激勵電流的方向不斷交替,因而傳感器輸出信號 幅度會加倍。對于0.5 米/秒至15 米/秒的流速測量范圍,傳感 器輸出信號幅度在75 μv 至4-6 mV 之間。圖3 顯示了用恒流 源激勵且有流體流經(jīng)傳感器時的傳感器輸出信號。在傳感器輸 出引線上捕捉到的示波器圖顯示,有一個電平非常低的信號位 于較大共模電壓上。紫色曲線對應(yīng)正電極,紅色曲線對應(yīng)負(fù)電 極。粉色曲線是將正負(fù)電極相減的數(shù)學(xué)計算通道。低電平信號 位于較大共模電壓之中。
圖3. 電磁流量傳感器的輸出信號
傳感器測量的傳統(tǒng)方法是什么?
傳統(tǒng)方法大致上是模擬式 — 具有高輸入阻抗和高輸入共模 抑制性能的前置放大器用來應(yīng)對傳感器漏電流效應(yīng),然后是三 階或四階模擬帶通濾波器和采樣保持級,最后是模數(shù)轉(zhuǎn)換。典 型模擬前端方法如圖4 所示。傳感器輸出信號首先經(jīng)由儀表放 大器放大。必須盡量放大目標(biāo)信號,同時要避免不需要的直流 共模電壓引起放大器輸出飽和。這通常會將第一級儀表放大器 的增益限制在最多10 倍。帶通濾波器級進(jìn)一步消除直流影響, 并再次放大信號,然后進(jìn)入采樣保持電路 — 正是這個差值信 號代表流速 — 隨后送至模數(shù)轉(zhuǎn)換器。
圖4. 傳統(tǒng)模擬前端方法
影響電磁流量計架構(gòu)變化的市場趨勢有哪些?
有多種行業(yè)趨勢在呼喚新架構(gòu)。其中之一是對數(shù)據(jù)日益增加的 需求。對于液體,監(jiān)測除流量外的其他屬性的能力正在變得越 來越有價值。例如,為了確定液體中可能有哪些污染物,或者 為了確定液體是否有適合特定應(yīng)用的正確密度/粘度。增加這 種診斷能力有許多此類要求和好處。利用傳統(tǒng)模擬方法是無法 輕松獲取此類信息的,因?yàn)榇蟛糠謧鞲衅餍畔谕浇庹{(diào)階 段中丟失。
另外,制造工藝持續(xù)要求提高生產(chǎn)力和效率。例如在液體投注/ 灌裝應(yīng)用中,增加的灌裝節(jié)點(diǎn)越來越多;制造工藝規(guī)模的擴(kuò)大, 灌裝速度的提高,要求更快速、更精確的流量監(jiān)測。
圖5. 液體投注/灌裝
傳統(tǒng)上利用機(jī)械或稱重技術(shù)來確定灌裝過程中要添加的正確 液體量,或生產(chǎn)工藝中的精確灌裝量。這些方式往往非常昂貴, 而且難以擴(kuò)展。為了滿足這種需求,流量計(尤其是針對液體 的電磁流量計)已成為首選技術(shù)。
新的電磁流量計架構(gòu)是什么樣子?
過采樣方法大大簡化了模擬前端設(shè)計。模擬帶通濾波器和采樣 保持電路不再需要。電路中的前置放大器僅有一級儀表放大器 — 在我們的例子中是AD8220 JFET 輸入級軌到軌輸出儀表放 大器,它可以直接連接到高速Σ-Δ 型轉(zhuǎn)換器。
圖6. 采用AD8220 和AD717x-x 的過采樣架構(gòu)模擬前端
對于模擬前端,重要的是什么,它如何影響我的設(shè)計?
放大器和ADC 是此類應(yīng)用中最重要的兩個模塊。第一級放大 器有幾項(xiàng)關(guān)健要求。
一個要求是共模抑制比 (CMRR)。液體電解質(zhì)中的離子會發(fā)生 定向運(yùn)動,因此,電極與流體之間會產(chǎn)生電勢,這就是所謂極 化。如果兩個電極完全一致,電極上的電勢應(yīng)彼此相等。不同 金屬的極化電壓在數(shù)百毫伏到±2 伏之間不等。這是出現(xiàn)在傳 感器輸出端和前置放大器輸入端的直流共模電壓。前置放大器 是抑制此共模電壓的關(guān)健。
圖7. 前置放大器的共模抑制
100 dB 共模抑制比會將0.3 伏直流共模衰減到3 微伏,后者作 為直流失調(diào)出現(xiàn)在放大器輸出端,可通過校準(zhǔn)予以消除。理想 情況下,傳感器上的共模電壓保持不變,但實(shí)際上,它會隨時ss 間而變化,并且會受到液體質(zhì)量或溫度等其他因素的影響。共 模抑制比越高,對連續(xù)后臺校準(zhǔn)的需求就會越少,流量穩(wěn)定性 也越高。
表1. 共模抑制對實(shí)際流速的影響
電極的金屬材料與電解質(zhì)液體接觸。液體電解質(zhì)與電極之間的 摩擦?xí)a(chǎn)生較高頻率的交流共模電壓。雖然幅度通常很小,但 交流共模表現(xiàn)為完全隨機(jī)的噪聲,更難抑制。這就要求前置放 大器不僅具有良好的直流共模抑制比,而且要有出色的較高頻 率共模抑制比。AD8220 放大器在直流到5 千赫茲范圍內(nèi)具有 出色的共模抑制比。對于AD8220 B 級,直流到60 赫茲范圍 的最小共模抑制比為100 dB,5 千赫茲以下為90 dB,能夠很 好地將共模電壓和噪聲抑制到微伏水平。當(dāng)共模抑制比為120 dB 時,0.1 伏峰峰值降低到0.1 微伏峰峰值。表2 顯示了較差 的CMRR 對輸出傳感器信號的影響。
圖8. AD8220 直流和交流共模抑制效應(yīng)
前置放大器級的低漏電流和高輸入阻抗是又一重要參數(shù),因?yàn)?電磁流量傳感器的輸出阻抗可能高達(dá)GΩ。放大器的高輸入阻 抗可防止傳感器輸出過載,避免信號幅度減小。放大器的漏電 流應(yīng)足夠低,這樣當(dāng)它流經(jīng)傳感器時,不會成為一個顯著的誤 差源。AD8220 的最大輸入偏置電流為10 pA,輸入阻抗為1013Ω, 因此它能支持電磁流量傳感器的廣泛輸出特性。表2 列出了前 置放大器輸入阻抗對10 GΩ 高輸出阻抗傳感器的影響。
表2. 放大器輸入阻抗對流速的影響
最后,0.1 赫茲至10 赫茲范圍的1/f 噪聲設(shè)置應(yīng)用的噪底。 當(dāng)增益配置為10 時,AD8220 折合到輸入端的電壓噪聲約為 0.94 μV p-p,它能分辨6 毫米/秒的瞬時流速和小于1 毫米/秒 的累計流速。
如何選擇ADC,對應(yīng)用而言哪些方面比較重要?
過采樣方法既帶來了挑戰(zhàn),也對ADC 模塊提出了更高的性能 要求。由于沒有后級模擬濾波器有源增益級,所以僅有一小部 分的ADC 輸入范圍獲得使用。過采樣和平均本身不等于性能 的顯著提高,因?yàn)楦鱾鞲衅髦芷谛枰耆⑾聛聿拍苡糜诹?量計算。此外,需要從這些有限的數(shù)據(jù)點(diǎn)獲得足夠多的模數(shù)轉(zhuǎn) 換樣本,從而在固件處理過程中消除意外毛刺。
圖9. 流量信號采樣
過采樣架構(gòu)一般要求ADC 數(shù)據(jù)速率大于20 kSPS,越快越好。 這與實(shí)際流量測量沒有明確關(guān)系。由于不存在模擬帶通濾波 器,ADC 輸入端會直接看到傳感器原始輸出。這種情況下, 傳感器的上升沿未經(jīng)濾波,因此ADC 在上升沿和下降沿期間 須具有足夠高的分辨率,以便足夠準(zhǔn)確地捕捉這些邊沿。
流量計的精度本身可通過瞬時流量測量或累計流量測量來確 定。流量計標(biāo)準(zhǔn)采用累計流量技術(shù) — 測量長時間(比如30 或60 秒)內(nèi)某一水量的平均流量。通過這種測量(而非瞬時 流量測量)可確定系統(tǒng)精度為±0.2%。瞬時流量適合需要實(shí)時 流速的應(yīng)用場合。它對電子器件的精度要求要高得多。理論上, 為了分辨5 毫米/秒的瞬時流量,ADC 需要在一個激勵周期(約 600 樣本的后置FIR 濾波器)內(nèi)實(shí)現(xiàn)20.7 位的峰峰值分辨率。 這可通過模擬前端來實(shí)現(xiàn)。
表3. 模擬前端和ADC 的噪聲預(yù)算
*數(shù)據(jù)來自一個FIR 濾波器周期和一次瞬時流量計算。
AD7172-2 提供低輸入噪聲和高采樣速度的完美組合,特別適 合電磁流量應(yīng)用。采用2.5 V 外部基準(zhǔn)電壓源時,AD7172-2 的典型噪聲低至0.47μV p-p。這意味著,最終流量結(jié)果的刷新 速率可以達(dá)到50 SPS,而不需要增加外部放大級。圖10 顯示 了采用AD7172-2 的過采樣前端電路的噪聲曲線。
圖10. 采用AD8220 和AD7172-2 的過采樣架構(gòu)的折合到輸入 端噪聲測試結(jié)果
如何獲得更快的響應(yīng)以滿足業(yè)界對更高效率的需求?
提高傳感器激勵頻率可以提高流量測量的系統(tǒng)更新速率。這種 情況下,傳感器輸出的建立時間會縮短,因而可用于平均的樣 本數(shù)會減少。使用更低噪聲的ADC,可以進(jìn)一步降低折合到 傳感器輸出端的噪聲。采用同樣的前端驅(qū)動器AD8220,其增 益配置為×10,可以比較更高更新速率下該模擬前端與主要競 爭產(chǎn)品的性能。表4 和圖11 顯示了與最接近的競爭產(chǎn)品相比, ADI 器件在更高系統(tǒng)更新速率下取得的優(yōu)勢。
表4. 不同傳感器激勵頻率下的測量精度比較
圖11. 不同傳感器激勵頻率下的測量精度比較
儀表放大器能否直接驅(qū)動ADC,我怎樣才能確定?
一般而言,這取決于儀表放大器的驅(qū)動能力和ADC 的輸入結(jié) 構(gòu)。許多現(xiàn)代精密ADC 是基于開關(guān)電容架構(gòu)。片內(nèi)采樣保持 器呈現(xiàn)為上游放大器的瞬態(tài)負(fù)載,它必須能讓開關(guān)電容輸入建 立,以便實(shí)現(xiàn)精確采樣。
圖12. 等效模擬輸入電路
下式可用來檢查放大器能否驅(qū)動ADC。
其中:
BW 為放大器驅(qū)動ADC 所需的最小帶寬。
MCLK 為ADC 調(diào)制器時鐘頻率(單位為赫茲)。
T 為短路相位時間(單位為秒)。
FS 為ADC 滿量程輸入范圍(單位為V)。
CMV 為ADC 輸入范圍的共模電壓(單位為V)。
Error 為ADC 采樣的建立誤差。
例如,AD7172-2 的調(diào)制器頻率為2 兆赫茲,短路相位時間為 10 ns,滿量程輸入范圍為5 V,共模電壓為2.5 V,建立誤差 為1 ppm。由此得到BW 值為8.7 兆赫茲,這就是當(dāng)AD7172-2 處于無緩沖模式時,驅(qū)動放大器需要的帶寬。它超過1.7 兆赫 茲— AD8220 及許多精密儀表放大器的增益帶寬積能力。 AD7172-2 的兩個ADC模擬輸入上均集成真正的軌到軌精密單 位增益緩沖器。它設(shè)計用來在全頻率范圍驅(qū)動AD7172-2 輸入 級,降低客戶的設(shè)計復(fù)雜度和風(fēng)險。緩沖器提供高輸入阻抗, 典型輸入電流僅5 nA,使得高阻抗信號源可以直接連接到模擬 輸入。緩沖器全面驅(qū)動ADC 內(nèi)置開關(guān)電容采樣網(wǎng)絡(luò),簡化了 模擬前端電路要求,而每個緩沖器的典型功耗僅有0.87 mA。 每個模擬輸入緩沖器放大器均完全斬波,就是說,這會使緩沖 器的失調(diào)誤差漂移和1/f 噪聲最小。
如何產(chǎn)生磁場?
通過線圈施加恒定電流,從而在測量管道內(nèi)部產(chǎn)生磁場;線圈 安裝在管道外部附近,常常成對存在,并且互相串聯(lián)。線圈通 常是數(shù)百匝銅線,因此在驅(qū)動器電路看來,其是一個較大電感。 線圈電感通常在數(shù)十到數(shù)百毫亨左右,另外還有50 Ω 到100 Ω 的直流串聯(lián)電阻。在每個周期內(nèi),通過斷開和閉合H 電橋上不 同的開關(guān)對,驅(qū)動器電路改變激勵電流方向,因而磁場也改變 方向。為了消除噪聲,交替頻率一般是電力線頻率的整小數(shù)倍。 驅(qū)動器電路包括一個恒流源和一個H 電橋,受微處理器控制。
圖13. 磁場產(chǎn)生
功耗是否重要?
是的。電磁流量計的激勵電流可能相當(dāng)大,從針對較小直徑管 道的50 毫安到針對較大直徑管道的500 毫安或1 安培不等。 恒流電路若采用線性穩(wěn)壓電路,可能會消耗大量功耗和電路板 面積。
與線性穩(wěn)壓恒流電路相比,開關(guān)模式電源可節(jié)省功耗。如圖所 示,ADP2441 配置為恒流源輸出模式。1.2 V ADR5040 輸出電 壓由兩個電阻分壓至150 mV。此150 mV 電壓施加于ADP2441 電壓跟蹤引腳,使得電壓反饋引腳也保持在150 mV。當(dāng)在反 饋引腳上使用一個0.6 Ω 電流設(shè)置電阻時,ADP2441 便會將其 輸出電流調(diào)節(jié)到預(yù)設(shè)電流ISET 水平。通過調(diào)整連接到ADP2441 反饋引腳的電流設(shè)置電阻值,便可調(diào)節(jié)恒流源。
圖14 (a). 利用開關(guān)電源和 iCoupler®驅(qū)動隔離H 電橋
(b). 利用線性調(diào)節(jié)電流源和光耦合器驅(qū)動隔離H 電橋
表5. 推薦開關(guān)穩(wěn)壓器
該驅(qū)動級設(shè)計有何其他優(yōu)勢?
它有顯著的面積優(yōu)勢。電磁流量傳感器驅(qū)動電路,也稱為激勵 電路,通常與信號調(diào)理電路(1 千伏基本隔離一般足夠)相隔 離。常規(guī)電磁流量變送器普遍使用光耦合器隔離。光耦合器的 可靠性往往很差,而且尺寸相當(dāng)大。ADuM7440 數(shù)字隔離器集 高速CMOS 和單片空芯變壓器技術(shù)于一體,在一個16 引腳小 型QSOP 封裝中提供四個獨(dú)立隔離通道。
圖15. 光耦合器與數(shù)字隔離器設(shè)計的面積比較
與采用光耦合器、線性穩(wěn)壓恒流源、通孔封裝的分立場效應(yīng)管 H 電橋的常規(guī)方案相比,使用數(shù)字隔離方法不僅可節(jié)省功耗,還能節(jié)約80%以上的電路面積。
表6. H 電橋驅(qū)動級使用的主要器件比較
如何計算流速?
在數(shù)字域中交流流量信號仍需要濾波和同步解調(diào)。圖15 說明 算法如何在數(shù)字域中實(shí)現(xiàn)同步解調(diào)。數(shù)字信號處理器發(fā)出控制 信號1 和2,這是一對互補(bǔ)邏輯信號,用于電磁流量傳感器線 圈激勵。在這兩個信號的控制下,流經(jīng)電磁流量傳感器線圈的 電流在每個周期都會反向,因而磁場方向和電極上的傳感器輸 出也會反向。
圖16. 數(shù)字域中的同步解調(diào)和流速計算
例如在第n 個周期,當(dāng)ADC 樣本輸入時,數(shù)字信號處理器(本 例為ADSP-BF504F)知道控制信號1 和2 的時序與邏輯。這 樣,數(shù)字信號處理器便可根據(jù)線圈驅(qū)動控制信號的邏輯狀態(tài)將 這些ADC 樣本安排到靜態(tài)隨機(jī)存儲器的兩個數(shù)組中。也就是 說,在正半周期獲得的帶時間戳樣本歸入一組,在負(fù)半周期采 集的樣本歸入另一組。隨后,每一組均經(jīng)過FIR(有限脈沖響 應(yīng))低通濾波器。濾波器截止頻率設(shè)置為30 赫茲,允許有用 信號通過,但會抑制電力線頻率干擾和高頻噪聲成分。圖17 顯示了過采樣前端設(shè)計中的FIR 濾波器幅頻曲線和模擬同步 解調(diào)架構(gòu)中的模擬帶通濾波器幅頻曲線。
圖17 (a). 數(shù)字FIR 低通濾波器幅頻曲線
(b). 模擬帶通濾波器幅頻曲線
然后,算法減去這兩個平均值以獲得一個與流速成正比的值。 此值的單位為LSB/(毫米/秒)。該值需要做進(jìn)一步處理。最終 流速計算如下:
其中:
ΔFlowRate 為從正負(fù)激勵階段中減去兩個平均值的結(jié)果,單位 為LSB。
VREF 為ADC 基準(zhǔn)電壓,單位為V。
N 為ADC 分辨率位數(shù)。
G 為模擬前端增益。
Sensitivity 為傳感器的標(biāo)稱靈敏度,單位為伏特/(毫米/秒)。
KT 為變送器系數(shù)。
KS 為傳感器系數(shù)。
KZ 為零點(diǎn)失調(diào)。
如何選擇合適的處理器?
選擇處理器是一個重要問題。業(yè)界越來越需要更高的處理能 力,用以支持更復(fù)雜的算法處理或增強(qiáng)的診斷/預(yù)測功能。另 外,提高電氣和工業(yè)基礎(chǔ)設(shè)施的能源效率已成為全球運(yùn)動???戶要求以更低的功耗和更實(shí)惠的價格獲得更高處理能力。
電磁流量計的數(shù)字濾波器可能需要大量處理能力。32 位FIR 濾波器要消耗80 MIPS。流速計算、外設(shè)通信驅(qū)動和數(shù)據(jù)通信 分別需要40 MIPS、32 MIPS 和20 MIPS。這些相加的總和為 172 MIPS。本設(shè)計中,上述任務(wù)由最高達(dá)到400 MIPS 的數(shù)字 信號處理器ADSP-BF504F 完成。這樣,已經(jīng)有將近50%的處 理能力被占用,其中還不包括多層協(xié)議堆棧、HART 通信、診 斷、安全監(jiān)控功能和液晶顯示驅(qū)動。
表7. MIPS 消耗
片內(nèi)外設(shè)也很重要。數(shù)字信號處理器有多種功能要實(shí)現(xiàn),包括 SPI、UART、 I2C和脈沖輸出通信。有35 個GPIO 可用于硬件 控制和邏輯輸入/輸出,例如控制液晶顯示器、鍵盤輸入、報 警和診斷等。SRAM 存儲器存儲濾波器系數(shù)、SPI 數(shù)據(jù)通信、 LCM 數(shù)據(jù)緩存、機(jī)器狀態(tài)數(shù)據(jù)和內(nèi)部狀態(tài)標(biāo)志。68 kB 片內(nèi)靜 態(tài)隨機(jī)存取存儲器 (SRAM) 滿足系統(tǒng)要求,包括一個32 kB L1 指令SRAM/緩存和一個32 kB L1 數(shù)據(jù)SRAM/緩存。RS-485 和HART 通信也需要存儲器。ADSP-BF504F 的4 MB 片內(nèi)閃 存可用來存儲程序數(shù)據(jù)、濾波器系數(shù)和校準(zhǔn)參數(shù)。
圖18. ADSP-BF504F 外設(shè)
未來對處理能力的需求會持續(xù)增加。未來滿足這種要求, ADSP-BF70x Blackfin® 處理器系列提供高性能DSP,具有同類 一流的800 MMACS 處理能力,而功耗不足100 mW。此系列 由8 款高性價比成員構(gòu)成,搭載最高1 MB 內(nèi)置L2 SRAM,使 許多應(yīng)用無需采用外部存儲器,而第二種配置則提供可選的 DDR2/LPDDR 存儲器接口。表8 列出了ADSP-BF7xx 系列的 重要特性。
表8. ADSP-BF70x Blackfin 處理器系列
ADI 公司針對電磁流量計解決方案提供何種支持?
ADI 公司開發(fā)了一款系統(tǒng)級參考設(shè)計,用以支持電磁流量計完 整信號鏈的原型開發(fā)。該系列配置靈活,可連接到任何類型的 電磁流量傳感器,施加適當(dāng)?shù)募铑l率和電壓即可產(chǎn)生磁場 (由Blackfin 數(shù)字信號處理器控制),能夠測量傳感器輸出, 以及應(yīng)用后處理濾波器和算法來計算流速。ADI 公司在真實(shí)的 流量試驗(yàn)臺環(huán)境中對設(shè)計進(jìn)行標(biāo)定(如圖19 所示),并將標(biāo)定 系數(shù)存儲在非易失存儲器中。支持單點(diǎn)或多點(diǎn)校準(zhǔn),通過多點(diǎn) 線性化可實(shí)現(xiàn)更高的性能。這樣做的結(jié)果表明:該模擬前端設(shè) 計的性能可以達(dá)到領(lǐng)先高端流量計的要求。
圖19. ADI 完整解決方案
相比傳統(tǒng)架構(gòu),過采樣架構(gòu)有多方面重要優(yōu)勢。面積和成本均 有顯著節(jié)省 — 分別達(dá)到50%和20%。由于能夠節(jié)省傳感器信 號并應(yīng)用后處理,功耗也會降低,系統(tǒng)性能也得以增強(qiáng)。有關(guān) ADI 參考設(shè)計的更多信息,請聯(lián)系 cic@analog.com.
您是否利用該設(shè)計測量過數(shù)據(jù)?
評估結(jié)果
該參考設(shè)計進(jìn)行過測試,我們把它連接到流量標(biāo)定試驗(yàn)臺上的 25 毫米直徑電磁流量傳感器,介質(zhì)為室溫下的水。激勵頻率設(shè) 置為6.25 赫茲,在0.5 米/秒到2 米/秒范圍內(nèi),基本誤差為讀 數(shù)的±0.2%。測試結(jié)果數(shù)據(jù)如表9 所示。
表9. 采用DN25 傳感器的數(shù)字過采樣演示板的校準(zhǔn)結(jié)果
總結(jié)
全世界有越來越多的環(huán)境法規(guī)要求監(jiān)測和控制來自住宅、商業(yè) 和工業(yè)的廢棄物,尤以歐洲為甚。電磁流量技術(shù)是此類應(yīng)用的 首選技術(shù)。傳統(tǒng)方法基本上是模擬方法,它有一些缺點(diǎn),表現(xiàn) 在成本、面積、功耗、響應(yīng)時間、有限的系統(tǒng)信息等方面。行 業(yè)趨勢是轉(zhuǎn)向過采樣方法。這給ADC 要求帶來了重大挑戰(zhàn), 因?yàn)楦滤俾蕰岣?0 倍左右,但平均值的好處得不到利用, ADC 在高數(shù)據(jù)速率下的噪聲要求需要進(jìn)一步提高。另外還有 功耗挑戰(zhàn)需要解決。液體和管道直徑均有很多類型,這就需要 能夠動態(tài)控制功耗,通過一種支持所有類型傳感器需求的設(shè)計 來將功耗降至最低。Blackfin 數(shù)字信號處理器集低功耗和高處 理能力于一體,滿足流量計應(yīng)用的要求。它執(zhí)行復(fù)雜的FIR 濾 波器算法來計算流速,同時具有領(lǐng)先的800 MMACS 處理能力, 而功耗不足100 mW。完整設(shè)計相比于之前的技術(shù)大大簡化, 而且可節(jié)省成本、功耗和面積,優(yōu)勢眾多。有關(guān)ADI 參考設(shè) 計的更多信息,請聯(lián)系cic@analog.com.
參考電路
Ardizzoni, John. "高速差分ADC 驅(qū)動器設(shè)計指南." 模擬對話, 第43 卷,2009 年5 月。
Walsh, Alan. "精密SAR 模數(shù)轉(zhuǎn)換器的前端放大器和RC 濾波 器設(shè)計" 模擬對話,第46 卷,2012 年12 月。
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開”超級電容的“外衣”,看看超級電容“超級”在哪兒
- DigiKey 誠邀各位參會者蒞臨SPS 2024?展會參觀交流,體驗(yàn)最新自動化產(chǎn)品
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索