你的位置:首頁(yè) > 測(cè)試測(cè)量 > 正文

使用微型模塊SIP中的集成無(wú)源器件的重要性

發(fā)布時(shí)間:2019-01-26 來(lái)源:Mark Murphy 和 Pat McGuinness 責(zé)任編輯:wenwei

【導(dǎo)讀】集成無(wú)源器件在我們的行業(yè)中并不是什么新事物——它們由來(lái)已久且眾所周知。實(shí)際上,ADI公司過去曾為市場(chǎng)生產(chǎn)過這類元件。當(dāng)芯片組將獨(dú)立的分立無(wú)源器件或者是集成無(wú)源網(wǎng)絡(luò)作為其一部分包含在內(nèi)時(shí),需要對(duì)走線寄生效應(yīng)、器件兼容性和電路板組裝等考慮因素進(jìn)行仔細(xì)的設(shè)計(jì)管理。雖然集成無(wú)源器件繼續(xù)在業(yè)界占據(jù)重要地位,但只有當(dāng)它們被集成到系統(tǒng)級(jí)封裝應(yīng)用中時(shí)才能實(shí)現(xiàn)其最重要的價(jià)值。
 
幾年前,ADI開始推出新的集成無(wú)源技術(shù)計(jì)劃 (iPassives™)。ADI旨在通過這項(xiàng)計(jì)劃提供二極管、電阻、電感和電容等無(wú)源元件,從而能夠更廣泛地涵蓋信號(hào)鏈設(shè)計(jì),同時(shí)克服現(xiàn)有采用無(wú)源元件方法的局限性和復(fù)雜性。ADI的客戶群對(duì)具有高效空間尺寸的更完整解決方案的需求,也推動(dòng)了這項(xiàng)計(jì)劃的發(fā)展。從設(shè)計(jì)人員的角度來(lái)看,iPassives可以被視為一種靈活的設(shè)計(jì)工具,能夠在極短的開發(fā)周期內(nèi)設(shè)計(jì)出具有同類最佳性能和魯棒性的系統(tǒng)解決方案。ADI擁有許多信號(hào)調(diào)理IC,我們擁有的獨(dú)特硅制造工藝使這些IC能夠?qū)崿F(xiàn)卓越的性能。ADI可以充分利用其現(xiàn)有產(chǎn)品的多樣性來(lái)生產(chǎn)具有卓越性能特征的即插即用系統(tǒng),而無(wú)需開發(fā)高度復(fù)雜的集成流程。在高度可定制的網(wǎng)絡(luò)中將集成無(wú)源技術(shù)與所有這些現(xiàn)有技術(shù)緊密結(jié)合,并利用系統(tǒng)級(jí)封裝技術(shù)進(jìn)行封裝,從而可創(chuàng)建完全經(jīng)過認(rèn)證、測(cè)試和表征的Module®器件。以前采用板級(jí)解決方案的系統(tǒng)現(xiàn)在可以簡(jiǎn)化為單個(gè)器件。從我們的客戶角度來(lái)看,他們現(xiàn)在可以獲得完整的解決方案,具有出色的開箱即用性能,可縮短開發(fā)周期并節(jié)約成本,而且所有這些都在非常緊湊的封裝內(nèi)實(shí)現(xiàn)。
 
無(wú)源技術(shù)
 
現(xiàn)在,我們來(lái)簡(jiǎn)要回顧一下基礎(chǔ)知識(shí),回想一下什么是無(wú)源元件。無(wú)源元件是無(wú)需電源供電的器件,它們的電流和電壓之間的關(guān)系相對(duì)簡(jiǎn)單。這些元件包括電阻、電容、電感、變壓器(即有效耦合電感)和二極管。有時(shí)電流-電壓之間的關(guān)系非常簡(jiǎn)單,就像電阻中電流隨電壓線性變化一樣。對(duì)于二極管來(lái)說,電流和電壓之間也存在直接關(guān)系,只是這種關(guān)系是指數(shù)關(guān)系。在電感和電容中,該關(guān)系是電流對(duì)電壓的瞬態(tài)依賴性。表1所示為四種基本無(wú)源元件定義這些關(guān)系的公式:
 
表1. 主要無(wú)源元件的基本公式
使用微型模塊SIP中的集成無(wú)源器件
 
無(wú)源器件既可以單獨(dú)使用,也可以串聯(lián)或并聯(lián),是模擬信號(hào)處理(RLC用于放大、衰減、耦合、調(diào)諧和濾波)、數(shù)字信號(hào)處理(上拉電阻、下拉電阻和阻抗匹配電阻)、EMI抑制(LC噪聲抑制)和電源管理(R用于電流檢測(cè)和限制,LC用于能量累積)的重要組成部分。
 
分立元件的局限性
 
過去,無(wú)源元件是分立的,這意味著它們是分別制造的,并且在電路中通過印刷電路板 (PCB) 上的導(dǎo)線或電源軌相連。隨著時(shí)間的推移,它們沿著三條路徑發(fā)展演變:更小的尺寸、更低的成本和更高的性能。這些發(fā)展現(xiàn)在已經(jīng)很成熟并經(jīng)過了優(yōu)化,但是占位尺寸和高度尺寸意味著分立無(wú)源元件總是限制了縮小整體解決方案的面積和體積的努力成效。無(wú)源器件通常在一個(gè)應(yīng)用中占物料清單的80%以上,占線路板面積約60%,占整個(gè)元件支出約20%。這些因素綜合在一起帶來(lái)了非常復(fù)雜的庫(kù)存控制和存儲(chǔ)挑戰(zhàn)。
 
就其本質(zhì)而言,分立器件是單獨(dú)處理的元件。盡管可能有一些方法可以確保從某些工藝批次中選擇元件,但每個(gè)元件仍然具有高度的獨(dú)特性。然而,當(dāng)需要非常匹配的元件時(shí),這是一個(gè)顯著的缺點(diǎn)。對(duì)于需要匹配的設(shè)備來(lái)說,元件之間的獨(dú)特性和差異性會(huì)導(dǎo)致誤差,從而降低時(shí)間零點(diǎn)的電路性能。此外,在電路的工作溫度范圍內(nèi)及使用壽命期間,這種性能下降總是越來(lái)越糟糕。
 
分立無(wú)源器件的另一個(gè)缺點(diǎn)是各個(gè)元件的組裝和布線非常耗時(shí),并且還占用很大的空間。這些元件使用焊接工藝連接,一般是通過通孔或表貼封裝技術(shù)(SMT)組裝。通孔是一種比較老的組裝技術(shù),它將帶引線的器件插入PCB的孔中,任何多余的引線長(zhǎng)度都將被折彎并切除,并通過波峰焊將器件的引線連接至PCB互連電源軌。表貼封裝幫助實(shí)現(xiàn)了更小的無(wú)源元件。在這種情況下,在PCB上蝕刻貼裝連接圖案,將焊錫膏覆蓋在圖案上,接著使用貼片機(jī)來(lái)定位放置SMT元件。然后,PCB經(jīng)過回流焊工藝(其間焊錫膏液化并建立電氣連接),并在冷卻時(shí),焊錫膏凝固并將SMT元件機(jī)械連接到PCB上。這兩種組裝技術(shù)的主要問題是,焊接過程可能非常不可靠,在缺陷目標(biāo)是每百萬(wàn)分之幾的行業(yè)中,這一點(diǎn)越來(lái)越令人擔(dān)憂。在確保焊點(diǎn)可靠性方面有幾個(gè)因素非常重要:焊錫膏的實(shí)際成分(現(xiàn)在基本上都是無(wú)鉛的,因此可靠性降低)、回流焊工藝中的機(jī)械穩(wěn)定性(機(jī)械振動(dòng)可使焊點(diǎn)干燥)、焊錫膏的純度(任何污染物都會(huì)對(duì)焊點(diǎn)的可靠性產(chǎn)生負(fù)面影響),以及回流焊工藝中的時(shí)間與溫度。焊錫膏加熱的速度如何、實(shí)際溫度和溫度的均勻性怎樣以及焊錫膏加熱的時(shí)間都非常關(guān)鍵。其中的任何變化都可能導(dǎo)致連接焊盤或通孔的損壞,或者也可能引起器件上的機(jī)械應(yīng)力,隨著時(shí)間的推移而導(dǎo)致故障。
 
在PCB上采用無(wú)源元件的另一個(gè)局限是,由于它們板上分布在各處,走線需要很長(zhǎng)。這可能會(huì)引入未計(jì)入的寄生參數(shù),從而使性能和結(jié)果的可重復(fù)性受限。通常,PCB走線具有大約1 nH/mm自感的長(zhǎng)度和電容,取決于線寬和與附近走線的距離。PCB走線的容差導(dǎo)致了寄生參數(shù)的變異,所以不僅帶來(lái)寄生效應(yīng)的破壞性,而且它們還是不可預(yù)測(cè)的。在PCB板上縮小容差會(huì)增加成本。
 
無(wú)源器件還提供了許多與外界的潛在接觸點(diǎn),這些接觸點(diǎn)經(jīng)手動(dòng)處理或機(jī)器處理可能會(huì)引起ESD事件。同樣,這對(duì)整體可靠性和魯棒性會(huì)造成不利影響和風(fēng)險(xiǎn)。
 
集成無(wú)源器件的優(yōu)勢(shì)
 
在深入探討集成無(wú)源器件相比分立無(wú)源器件的優(yōu)勢(shì)之前,我們首先概述一下集成無(wú)源器件的起源。集成電路現(xiàn)在包含了許多晶體管(實(shí)際上是數(shù)百萬(wàn)個(gè)),它們由精細(xì)的金屬互相連接在一起。針對(duì)模擬類的應(yīng)用,業(yè)界還開發(fā)了特殊的工藝,如DAC和ADC中除了晶體管,還包含電阻和電容等無(wú)源元件。為了實(shí)現(xiàn)這些精密的模擬應(yīng)用所需的性能,已經(jīng)開發(fā)出質(zhì)量非常高的無(wú)源元件。用來(lái)構(gòu)建集成無(wú)源器件的正是這些高質(zhì)量的無(wú)源元件。正如集成電路中包含許多晶體管一樣,集成無(wú)源器件可以在一個(gè)非常小的封裝內(nèi)包含許多高質(zhì)量的無(wú)源元件。與集成電路一樣,集成無(wú)源器件在大面積襯底(晶圓)上制造,同時(shí)生成多個(gè)無(wú)源網(wǎng)絡(luò)。
 
與分立無(wú)源元件相比,集成無(wú)源器件最引人注目的優(yōu)勢(shì)之一是可以實(shí)現(xiàn)精確匹配。在制造集成無(wú)源網(wǎng)絡(luò)時(shí),網(wǎng)絡(luò)內(nèi)的所有元件都是在相同條件下同時(shí)制造的,具有相同的材料,而且由于網(wǎng)絡(luò)緊湊,基本上是在同一位置。采用這種方式制造的無(wú)源元件比分立無(wú)源元件更可能具有出色的匹配。為了說明這一點(diǎn),我們假設(shè)有一個(gè)應(yīng)用需要兩個(gè)匹配的電阻。這些電阻在圓形襯底(如硅晶圓)上制造,如圖1所示。由于細(xì)微的工藝差異,如電阻薄膜的厚度、薄膜的化學(xué)性質(zhì)、接觸電阻等,因此在同一個(gè)批次內(nèi)將存在一定的阻值差異,而在多個(gè)批次里差異值更大。在圖1所示的例子中,深綠色表示電阻在容差范圍的高位值端,黃色表示電阻在容差范圍的低位值端。
對(duì)于標(biāo)準(zhǔn)的分立器件來(lái)說,兩個(gè)電阻中的任意一個(gè)都可能來(lái)自不同的制造批次,如圖中用紅色表示的兩個(gè)單獨(dú)的電阻。這兩個(gè)分立電阻之間可觀察到的容差范圍可能是整個(gè)工藝的容差范圍,因此匹配較差。對(duì)于有特殊的訂購(gòu)限制而言,有可能從同一個(gè)批次中選擇這兩個(gè)分立電阻,如圖中用藍(lán)色標(biāo)出的兩個(gè)單獨(dú)的電阻。這兩個(gè)電阻之間可觀察到的容差只會(huì)是在同一個(gè)批次內(nèi)的容差范圍。雖然這兩個(gè)電阻之間的匹配將優(yōu)于隨機(jī)分立器件的情況,但仍有可能出現(xiàn)某種程度的不匹配。最后,對(duì)于集成無(wú)源器件,兩個(gè)電阻來(lái)自同一個(gè)芯片,如圖1黑色所示。這兩個(gè)電阻之間唯一可觀察到的容差是在同一個(gè)管芯內(nèi)的容差范圍。因此,這兩個(gè)電阻之間的匹配將非常出色。此外,使用交叉四邊形布局的其他技術(shù)和其他方法可以進(jìn)一步嚴(yán)格限制兩個(gè)電阻之間的擴(kuò)散,使元件的匹配達(dá)到最佳值。集成無(wú)源元件之間的匹配不僅在時(shí)間零點(diǎn)比分立無(wú)源元件要好得多,而且由于其制造已經(jīng)很好地耦合,因此在整個(gè)溫度、機(jī)械應(yīng)力和使用壽命范圍內(nèi)都可保持更好的匹配記錄。
 
使用微型模塊SIP中的集成無(wú)源器件
圖1. 分立電阻與無(wú)源電阻的匹配比較。
 
集成無(wú)源器件中的各個(gè)元件緊密地放置在一起(實(shí)際上在微米范圍內(nèi)),因此,互連寄生參數(shù)(如布線電阻和電感)可以保持在極低的水平。在PCB上,由于走線容差和元件放置容差,互連寄生參數(shù)可能會(huì)發(fā)生變化。由于制造工藝中采用微影工藝,因此使用集成無(wú)源器件的互連容差和元件放置容差都很小。在集成無(wú)源器件中,不僅寄生參數(shù)非常小,而且這些為數(shù)不多的參數(shù)還是可預(yù)測(cè)的,因此可靠性很高。
 
通過集成無(wú)源器件實(shí)現(xiàn)無(wú)源網(wǎng)絡(luò)的小型化,為電路板直接帶來(lái)小尺寸的優(yōu)勢(shì)。這直接使電路板成本降低,并允許在更小的占位空間上實(shí)現(xiàn)更多功能和更高性能。使用集成無(wú)源器件時(shí),構(gòu)建多通道系統(tǒng)變得更加實(shí)際可行。
 
集成無(wú)源器件的另一個(gè)顯著優(yōu)勢(shì)是其整個(gè)布線網(wǎng)絡(luò)周圍的魯棒性。集成無(wú)源器件本質(zhì)上是在一個(gè)完整的單元里一起鍛造,用玻璃密封,然后進(jìn)一步由牢固的塑料封裝進(jìn)行保護(hù),而不需要大量的焊接連接。在集成無(wú)源網(wǎng)絡(luò)中,不存在焊點(diǎn)干燥、腐蝕或元件錯(cuò)位的問題。
 
集成無(wú)源網(wǎng)絡(luò)密封性能出色帶來(lái)的另一個(gè)優(yōu)勢(shì)是,系統(tǒng)中暴露節(jié)點(diǎn)的數(shù)量大大減少。因此,系統(tǒng)因意外短路或靜電放電 (ESD) 事件損壞的可能性顯著降低。
 
維護(hù)和控制任何電路板組裝的元件庫(kù)存都是一項(xiàng)非常復(fù)雜的任務(wù)。集成無(wú)源器件在一個(gè)器件內(nèi)包含多個(gè)無(wú)源元件,大大減輕了客戶的物料清單負(fù)擔(dān),從而降低擁有成本。客戶可以獲得經(jīng)過完全測(cè)試和充分驗(yàn)證的集成無(wú)源網(wǎng)絡(luò)。這意味著,最終線路板構(gòu)建的產(chǎn)量得到提高,這不僅可以進(jìn)一步節(jié)省成本,還可以提高供應(yīng)鏈的可預(yù)測(cè)性。
 
使用ADI的集成無(wú)源器件(iPassives)
 
如前所述,高質(zhì)量的無(wú)源器件一直是ADI多年來(lái)眾多產(chǎn)品所實(shí)現(xiàn)的電路性能的核心。在此期間,無(wú)源器件的范圍不斷擴(kuò)大并且質(zhì)量不斷提高,集成無(wú)源器件產(chǎn)品組合現(xiàn)在包含大量元件。集成無(wú)源器件采用模塊化工藝,這意味著只有在需要特定元件時(shí)才需要執(zhí)行生產(chǎn)某種類型無(wú)源器件所需的工藝步驟。iPassives網(wǎng)絡(luò)的構(gòu)建基本上只需要必需的工藝復(fù)雜性,不多也不少。如圖2所示,有許多無(wú)源構(gòu)建塊可供選擇,構(gòu)建一個(gè)集成無(wú)源網(wǎng)絡(luò)就像將所需元件拼裝在一起一樣簡(jiǎn)單。
 
使用微型模塊SIP中的集成無(wú)源器件
圖2. iPassives構(gòu)建塊。
 
如本文前面所述,集成無(wú)源器件與分立無(wú)源器件相比具有許多優(yōu)勢(shì)。ADI將它們用于Module器件中,進(jìn)一步加強(qiáng)了這些優(yōu)勢(shì)。這些模塊利用了各種集成電路的功能。這些電路通過量身定制的工藝進(jìn)行制造,所提供的增強(qiáng)性能是無(wú)法通過其他任何單一工藝實(shí)現(xiàn)的。ADI正在使用iPassives將這些集成電路連接在一起,由此在單個(gè)器件內(nèi)構(gòu)建完整的精密信號(hào)鏈。圖3中的兩個(gè)Module器件示例包括數(shù)據(jù)轉(zhuǎn)換器、放大器和其他元件,通過采用集成無(wú)源器件構(gòu)建的無(wú)源增益和濾波網(wǎng)絡(luò)將它們結(jié)合在一起。
 
使用微型模塊SIP中的集成無(wú)源器件
圖3. 使用iPassives的μModule產(chǎn)品示例。
 
ADI生產(chǎn)高度可定制的精密信號(hào)調(diào)理系統(tǒng)。采用來(lái)自大量經(jīng)現(xiàn)場(chǎng)驗(yàn)證的IC產(chǎn)品組合的可重復(fù)使用的方法,并將其與iPassives的多功能性相結(jié)合,從而使開發(fā)周期時(shí)間和成本都顯著下降。這一決定為客戶提供了巨大的優(yōu)勢(shì),使客戶可以自行利用最先進(jìn)的性能更快、更高效地進(jìn)入市場(chǎng)。
 
結(jié)論
 
乍一看,使用集成無(wú)源器件可能只會(huì)比其他更成熟的方法顯得略微有利。然而,實(shí)際優(yōu)勢(shì)更為顯著,ADI采用iPassives不僅重新定義了可以實(shí)現(xiàn)的功能,還重新定義了速度、成本和設(shè)計(jì)尺寸,使之對(duì)客戶更為有利。
 
 
推薦閱讀:
 
高精度、快速建立的大電流源
應(yīng)用于EMC的磁元件-磁珠篇 (上)
應(yīng)用于EMC的磁元件-磁珠篇 (下)
不要什么地方都用0.1μF電容
帶有次級(jí)LC濾波器的電流模式降壓轉(zhuǎn)換器的建模與控制
要采購(gòu)焊接么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉