【導(dǎo)讀】為什么很多射頻系統(tǒng)或者部件中,很多時候都是用50歐姆的阻抗,這個數(shù)值是怎么確定下來的,背后有什么意義呢?本文將為您打開其中的奧秘。
我們知道射頻的傳輸需要天線和同軸電纜,射頻信號的傳輸我們總是希望盡可能傳輸更遠(yuǎn)的距離,為了傳輸更遠(yuǎn)的距離,我們往往希望用很大的功率去發(fā)射信號便于覆蓋更大的通信范圍??墒菍嶋H上,同軸電纜本身是有損耗的,和我們平常使用得導(dǎo)線一樣,如果傳輸功率過大,導(dǎo)線會發(fā)熱甚至熔斷。這樣,我們就有一種期望,試圖尋找一種能夠傳輸大功率,同時損耗又非常小的同軸電纜。
大概在1929年,貝爾實驗室做了很多實驗,最終發(fā)現(xiàn)符合這種大功率傳輸,損耗小的同軸電纜其特征阻抗分別是30歐姆和77歐姆。其中,30歐姆的同軸電纜可以傳輸?shù)墓β适亲畲蟮模?7歐姆的同軸電纜傳輸信號的損耗是最小的。30歐姆和77歐姆的算術(shù)平均值為53.5歐姆,30歐姆和77歐姆的幾何平均值是48歐姆,我們經(jīng)常所說的50歐姆系統(tǒng)阻抗其實是53.5歐姆和48歐姆的一個工程上的折中考慮,考慮最大功率傳輸和最小損耗盡可能同時滿足。而且通過實踐發(fā)現(xiàn),50歐姆的系統(tǒng)阻抗,對于半波長偶極子天線和四分之一波長單極子天線的端口阻抗也是匹配的,引起的反射損耗是最小的。
我們常見的系統(tǒng)中,比如電視TV和廣播FM接收系統(tǒng)中,其系統(tǒng)阻抗基本上都是75歐姆,正是因為75歐姆射頻傳輸系統(tǒng)中,信號傳輸?shù)膿p耗是最小的,TV和廣播FM接收系統(tǒng)中,信號的傳輸損耗是重要的考慮因素。而對于帶有發(fā)射的電臺而言,50歐姆是很常見的,因為最大功率傳輸是我們考慮的主要因素,同時損耗也比較重要。這就是為什么我們的對講機(jī)系統(tǒng)中,經(jīng)??吹降亩际?0歐姆的參數(shù)指標(biāo)。
如果說阻抗匹配到50歐姆,從數(shù)學(xué)上,是可以嚴(yán)格做到的,但是實際應(yīng)用中的任何元件,線路,導(dǎo)線都存在損耗,而且設(shè)計的任何系統(tǒng)部件都存在一定的射頻帶寬,所以匹配到50歐姆,工程上只要保證所有的帶內(nèi)頻點落在50歐姆附近即可。在Smith圓圖上來看,就是盡可能趨近于圓圖的圓心即可,確保帶內(nèi)的射頻傳輸信號盡可能沒有反射損耗,獲得最大程度的能量傳輸。
為什么大多數(shù)工程師喜歡用 50 歐姆作為 PCB 的傳輸線阻抗(有時候這個值甚至就是 PCB 板的缺省值) ,為什么不是 60 或者是 70 歐姆呢?
對于寬度確定的走線,3 個主要的因素會影響 PCB 走線的 阻抗。首先,是 PCB 走線近區(qū)場的 EMI(電磁干擾)和這個走線距參考平面的高度是成一定的比例關(guān)系的,高度越低意味著輻射越小。其次,串?dāng)_會隨走線高度有顯著的變化,把高度減少一半,串?dāng)_會減少到近四分之一。最后,高度越低阻抗越小,不易受電容性負(fù)載影響。所有的三個因素都會讓設(shè)計者把走線盡量靠近參考平面。阻止你把走線高度降到零的原因是,大多數(shù)芯片驅(qū)動不了阻抗小于 50 歐姆的傳輸線。(這個規(guī)則的特例是可以驅(qū)動 27 歐姆的Rambus,以及 National 的的 BTL 系列,它可以驅(qū)動 17 歐姆)并不是所有的情況都是用50歐姆最好。例如,8080 處理器的很老的 NMOS 結(jié)構(gòu),工作在 100KHz,沒有 EMI,串?dāng)_和電容性負(fù)載的問題,它也不能驅(qū)動 50 歐姆。對于這個處理器來說,高的阻抗意味著低功耗,你要盡可能的用細(xì)的,高的這樣有高阻抗的線。純機(jī)械的角度也要考慮到。例如,從密度上講,多層板層間距離很小,70 歐姆阻抗所需要的線寬工藝很難做到。這種情況,你應(yīng)該用 50 歐姆,它的線寬更加寬,更易于制造。
同軸電纜的阻抗又是怎么樣的呢?在 RF 領(lǐng)域,和 PCB 中考慮的問題不一樣,但是RF 工業(yè)中同軸電纜也有類似的阻抗范圍。根據(jù) IEC 的出版物(1967年),75 歐姆是一個常見的同軸電纜(注:空氣作為絕緣層)阻抗標(biāo)準(zhǔn),因為你可以和一些常見的天線配置相匹配。它也定義了一種基于固態(tài)聚乙烯的 50 歐姆電纜,因為對于直徑固定的外部屏蔽層和介電常數(shù)固定為 2.2(固態(tài)聚乙烯的介電常數(shù))的時候,50 歐姆阻抗趨膚效應(yīng)損耗最小。
你可以從基本的物理學(xué)來證明 50 歐姆是最好的,電纜的趨膚效應(yīng)損耗 L(以分貝做單位)和總的趨膚效應(yīng)電阻 R(單位長度)除以特性阻抗 Z0 成正比??偟内吥w效應(yīng)電阻 R 是屏蔽層和中間導(dǎo)體電阻之和。屏蔽層的趨膚效應(yīng)電阻在高頻時,和它的直徑d2 成反比。據(jù)濾波器公眾平臺了解,同軸電纜內(nèi)部導(dǎo)體的趨膚效應(yīng)電阻在高頻時,和他的直徑 d1 成反比??偣驳拇?lián)電阻 R,因此和(1/d2 +1/d1)成正比。綜合這些因素,給定 d2 和相應(yīng)的隔離材料的介電常數(shù) ER,你可以用以下公式來減少趨膚效應(yīng)損耗。
在任何關(guān)于電磁場和微波的基礎(chǔ)書中,你都可以找到 Z0 是 d2,d1 和 ER(博主注:絕緣層的相對介電常數(shù))的函數(shù)
把公式 2 帶入公式 1 中,分子分母同時乘以 d2,整理得到
公式 3 分離出常數(shù)項(/60)*(1/d2),有效的項((1+d2/d1 )/ln(d2/d1 ))確定最小點。仔細(xì)查看公式三公式的最小值點僅由 d2/d1 控制,和 ER 以及固定值 d2 無關(guān)。以 d2/d1為參數(shù),為 L 做圖,顯示 d2/d1=3.5911 時(注:解一個超越方程),取得最小值。假定固態(tài)聚乙烯的介電常數(shù)為 2.25,d2/d1=3.5911 得出特性阻抗為 51.1 歐姆。很久之前,無線電工程師為了方便使用,把這個值近似為 50 歐姆作為同軸電纜最優(yōu)值。這證明了在0 歐姆附近,L 是最小的。但這并不影響你使用其他阻抗。例如,你做一個 75 歐姆的電纜,有著同樣的屏蔽層直徑(注:d2)和絕緣體(注:ER),趨膚效應(yīng)損耗會增加 12%。不同的絕緣體,用最優(yōu) d2/d1 比例產(chǎn)生的最優(yōu)阻抗會略有不同(注:比如空氣絕緣就對應(yīng) 77 歐姆左右,工程師取值 75 歐姆方便使用)。
其他補充:上述推導(dǎo)也解釋了為什么 75 歐姆電視電纜切面是藕狀空芯結(jié)構(gòu)而 50 歐姆通信電纜是實芯的。還有一個重要提示,只要經(jīng)濟(jì)情況許可,盡量選擇大外徑電纜(博主注:d2),除了提高強(qiáng)度外,更主要的原因是,外徑越大,內(nèi)徑也越大(最優(yōu)的徑比d2/d1),導(dǎo)體的 RF 損耗當(dāng)然就越小。
為什么 50 歐姆成為了射頻傳輸線的阻抗標(biāo)準(zhǔn)?一個最為流傳的故事版本,來自于 Harmon Banning 的《電纜:關(guān)于 50 歐姆的來歷可能有很多故事》。在微波應(yīng)用的初期,二次世界大戰(zhàn)期間,阻抗的選擇完全依賴于使用的需要.對于大功率的處理,30 歐姆和 44 歐姆常被使用。另一方面,最低損耗的空氣填充線的阻抗是 93 歐姆。在那些歲月里,對于很少用的更高頻率,沒有易彎曲的軟電纜,僅僅是填充空氣介質(zhì)的剛性導(dǎo)管。半剛性電纜誕生于 50 年代早期,真正的微波軟電纜出現(xiàn)是大約 10 年以后了。隨著技術(shù)的進(jìn)步,需要給出阻抗標(biāo)準(zhǔn),以便在經(jīng)濟(jì)性和方便性上取得平衡。在美國,50 歐姆是一個折中的選擇;為聯(lián)合陸軍和海軍解決這些問題,一個名為 JAN 的組織成立了,就是后來的 DESC,由 MIL 特別發(fā)展的,據(jù)濾波器公眾平臺了解到,歐洲選擇了 60 歐姆。事實上,在美國最多使用的導(dǎo)管是由現(xiàn)有的標(biāo)尺竿和水管連接成的,51.5 歐姆是十分常見的??吹胶陀玫?50 歐姆到 51.5 歐姆的適配器/轉(zhuǎn)換器,感覺很奇怪的。最終 50 歐姆勝出了,并且特別的導(dǎo)管被制造出來(也可能是裝修工人略微改變了他們管子的直徑)。不久以后,在象 Hewlett-Packard 這樣在業(yè)界占統(tǒng)治地位的公司的影響下,歐洲人也被迫改變了。75 歐姆是遠(yuǎn)程通訊的標(biāo)準(zhǔn),由于是介質(zhì)填充線,在 77 歐姆獲得最低的損耗。93 歐姆一直用于短接續(xù),如連接計算機(jī)主機(jī)和監(jiān)視器,其低電容的特點,減少了電路的負(fù)載,并允許更長的接續(xù);濾波器公眾平臺建議,如果有感興趣的朋友可以自行查閱 MIT RadLab Series 的第 9 卷,里面有更詳細(xì)的描述。
推薦閱讀: